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Abstract

This thesis develops a comprehensive theoretical and numerical framework for the semi-geostrophic
equations of atmospheric dynamics, grounded in the theory of semi-discrete optimal trans-
port. First, we present a novel, mesh-free, 3D numerical scheme for the incompressible semi-
geostrophic equations. This method is structurally energy-conserving, enabling robust, long-
term simulations, as demonstrated by the first fully 3D simulation of a twin cyclone using
a semi-discrete optimal transport approach. Second, we establish a major theoretical result:
the global-in-time existence of weak solutions for the compressible semi-geostrophic equations
with compactly supported, measure-valued initial data. This significantly generalizes previous
results by leveraging a particle discretization strategy and a dual formulation of the underlying
energy minimization problem. Finally, we provide a rigorous justification for the framework’s
applicability to physically relevant settings by verifying the necessary geometric conditions for
rectangular domains, which are not covered by standard c-convexity assumptions. As a first
step towards simulating the compressible system, the final chapter derives a 2D slice model and
its particle-based discretization, establishing the foundation for future 2D and 3D compressible
simulations. Together, these contributions provide a unified and powerful approach for the

analysis and simulation of large-scale atmospheric flows.



There’s no such thing as neutral education. Education either functions as an instrument to
bring about conformity or freedom.

Paulo Freire, Pedagogy of the Oppressed
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Chapter 1

Introduction

1.1 History of Mathematical Meteorology

Being able to predict the weather has long been a matter of the utmost importance for human
civilization. Whether it is determining sunshine or rain for an upcoming festival, guiding
agricultural practices, or informing military decisions, forecasting weather conditions across
both short and long timescales has been a topic of study since the beginning of recorded history.
For much of that history, understanding weather patterns relied primarily on intuition, local
experience, and communal knowledge. However, the advent of radar, satellites, and computers
has transformed our relationship with these mercurial atmospheric phenomena, enabling us
to make informed and precise predictions. The modern study of meteorology began in the
mid-19th century, marked by systematic data collection and the establishment of structured
observation networks enabled by the invention of the electric telegraph. With the 1854 founding
of the UK’s Meteorological Department by Admiral Robert FitzRoy and the ideas of Vilhelm
Bjerknes, meteorology as we know it took shape.

In 1904, Vilhelm Bjerknes [7] articulated his vision of weather prediction based on underlying
mathematical and physical principles. He layed out a program to forecast weather using the
Navier—Stokes equations for a rotating fluid, the continuity of mass equation, and atmospheric
thermodynamics. His vision framed weather forecasting as an initial value problem, however
actually carrying out this vision posed enormous challenges, as early 20th-century scientists had
no practical means to solve the system of equations in full. Even setting up the problem was
daunting: vast amounts of data were needed for the initial state, and solving the full equations
by hand or graphical methods was impossible.

One of the earliest attempts to predict weather by calculation was made by Lewis Fry
Richardson during World War I [58]. Richardson essentially tried to step forward the full system

of atmospheric equations, which we now call the primitive equations, by hand calculation. The
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result, unfortunately, was physically implausible because the full set of equations allowed fast-
moving sound waves and certain gravity-inertia waves to dominate the solution with “noise” and
spurious oscillations. Richardson’s pioneering trial made it clear that some form of filtering or
simplification was necessary. To predict the slow (relative to sound waves) evolution of weather
systems one would need to filter out the rapid oscillations. This insight, combined with the
sheer computational impracticality of the primitive equations, provided a strong motivation for
developing reduced forms of the Navier—Stokes equations for large-scale atmospheric modelling.

By the late 1940s, with electronic computers on the horizon, meteorologists revisited the
problem of numerical weather prediction armed with new tools and the lessons of Richardson’s
failure. Jule Charney [15], Arnt Eliassen [30], and others spearheaded an effort to find a
simplified set of equations that would capture the essential slow dynamics of the atmosphere
while filtering out the troublesome fast modes. The result was the formulation of the quasi-
geostrophic (QG) equations. The QG system is derived by assuming that large-scale motions
are nearly in geostrophic balance, i.e. the Coriolis force and horizontal pressure gradient are
nearly in equilibrium. In this regime, which is typical of mid-latitude weather systems, the
acceleration of air parcels is relatively small compared to the forces acting on them. Charney
established that geostrophic balance was a reasonable assumption via a scale analysis of the
Navier—Stokes equations in 1948 [13]. He showed that for synoptic-scale flows, with horizontal
lengths on the order of thousands of kilometres and wind speeds of a few tens of meters per
second, the ratio of inertial force to Coriolis force is very small. This implies that the flow is
very nearly steady in the rotating frame, and thus to a first approximation one can set the local
acceleration terms to zero. This is known as the geostrophic approzimation. The QG equations
omit sound waves and fast inertial waves because hydrostatic balance is assumed. Hydrostatic
balance eliminates vertical accelerations due to the balance between pressure and gravity and
the lack of vertical acceleration means that sound waves cannot propagate. This greatly reduces
the influence of fast gravity-inertia waves, leaving a system that describes the slow, balanced
evolution of pressure and flow. These equations govern the changes in the geopotential due to
advection and slowly varying motions, and diagnostic relations can be used to infer vertical
motion from horizontal temperature and pressure fields.

Not only did QG theory provide a theoretical framework for understanding atmospheric
waves and instabilities, for example, Charney’s and Eady’s classic theories of baroclinic insta-

bility [14, 28] were built on the QG model, but it also enabled the first practical numerical
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weather forecasts. In 1950, Charney, together with Ragnar Fjortoft and John von Neumann
[16], performed a historic numerical weather prediction experiment that proved the concept of
using these simplified equations. They integrated a barotropic, single-layer QG model on the
ENTAC computer for a 24-hour forecast of the 500-mb height field over North America. Unlike
Richardson’s hand-calculated attempt, this forecast was recognizably accurate: the predicted
pressure pattern after one day bore a strong resemblance to the observed pattern, demonstrat-
ing that the filtered model was capturing the real evolution of the weather. This success was
a proof of concept that large-scale weather could be predicted by numerical integration, as
long as one uses an appropriate simplified model. QG models quickly became the backbone of
mid 20th-century dynamic meteorology: they were used in research to understand jet streams,
storm tracks, cyclones, and frontogenesis, and even as the basis for early operational forecasting
models in the 1950s and 1960s. The QG equations were attractive not only because they filtered
out fast acoustic modes, but also because they can be described in terms of a single conserved
quantity, potential vorticity, with the rest of the flow deduced from the potential vorticity via
underlying physical relationships.

There exists a well-developed mathematical theory for the QG equations, primarily because
they form a system of conservation laws. This structure allows for the application of classical
analytical techniques, enabling robust proofs of existence, uniqueness, and regularity of solu-
tions. Moreover, this theoretical framework facilitates rigorous estimates of the convergence
properties of numerical approximations.

It is important to stress the assumptions and limits behind the QG equations, which are
derived under the assumption that the atmosphere is stably stratified, i.e. density decreases
monotonically as you rise in the atmosphere, and in hydrostatic balance, i.e. vertical acceler-
ations are negligible compared to gravity, which is well justified for large-scale motion. How-
ever, the QG system fails when the flow is not sufficiently near geostrophic balance, or when
the time/space scales of interest approach those of convection, gravity-wave propagation, or
equatorial motion. Phenomena like small mesoscale convective systems, tropical cyclones, or
equatorial waves fall outside QG theory. These restrictions meant that, while QG was excellent
for midlatitude cyclones and planetary waves, it could not address every atmospheric scenario
and refined models that relax the strict assumptions of QG while still keeping the problem
manageable were needed. Furthermore, QG requires that the rotation coefficient of the system

is constant, this is not physical and is a limitation removed in the system that this thesis is
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chiefly interested in.

One of the first people to push beyond the quasi-geostrophic paradigm was Arnt Eliassen, the
Norwegian meteorologist who had worked closely with Charney. He developed what is known as
the geostrophic momentum approximation, which forms the basis of the semi-geostrophic (SG)
equations. In essence, Eliassen’s SG model [30] kept the spirit of the QG approach assuming
the atmosphere is largely governed by rotation and stratification, but allowed a bigger role for
momentum advection in the flow. Eliassen’s formulation acknowledged that in some intense
large-scale phenomena, such as narrow jet-stream perturbations or developing frontal zones, the
departures from geostrophic balance, though still small in an absolute sense, are not negligible
second-order effects as QG would assume. In those situations, the atmosphere can develop
sharp gradients, for example, a frontal surface with large temperature contrasts over a short
distance, or strong accelerations along a jet streak. The SG equations include certain nonlinear
terms that QG omits, most notably, they use the geostrophic wind to advect momentum,
an approximation that allows for a more robust handling of momentum conservation while
still filtering out fast waves. By using the geostrophic wind in the advection terms of the
momentum equations, Eliassen’s model permitted a larger ageostrophic circulation to develop
than QG would allow. This made the SG model more capable of simulating phenomena like
the distortion of weather fronts and the accompanying vertical circulations that are crucial for
frontogenesis.

Early computers and limited data made the implementation of SG challenging, so for a
while QG remained the preferred tool for operational forecasting. Nevertheless, Eliassen’s con-
tribution was significant as a forward-looking theoretical development. It laid a foundation for
later scientists to analyze and simulate the life cycle of fronts and other balanced disturbances
that QG theory handles imperfectly. In fact, the SG equations turned out to be especially
powerful in studying atmospheric frontogenesis, the process by which weather fronts sharpen,
because the SG model can represent the increasing asymmetry and the intense ageostrophic
secondary circulations, the rising and sinking motions, that attend a developing front.

Despite its potential, Eliassen’s SG formulation initially remained underutilized until it was
independently rediscovered by Bretherton and Hoskins in the 1970s [42]. Their work recognized
that SG theory offered an effective mathematical framework for accurately capturing the sharp
discontinuities observed in atmospheric flows, particularly those marking weather fronts, where

the QG approximation proved insufficient [42, 43]. Building upon these foundations, Cullen
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at the UK Met Office championed SG theory as a practical means of improving numerical
weather prediction models, particularly in resolving frontal dynamics. Cullen and collaborators
made substantial progress in understanding the SG equations, systematically exploring their
mathematical structure and identifying critical energy- and structure-preserving properties [25].
A key contribution by Cullen was his convexity principle, guided by his physical intuition,
conjecturing that physically relevant solutions to the SG equations must satisfy the condition
that the modified pressure is convex. This convexity condition is crucial for ensuring the stability

and predictability of solutions.

1.1.1 Modern Semi-Geostrophic Theory

As part of his work Hoskin’s introduced a coordinate transformation (see Eq. (1.20)). A sig-
nificant conceptual breakthrough emerged in 1998 when Brenier and Benamou established an
unexpected yet profound connection between Hoskins’ coordinate transformation and the theory
of optimal transport [5]. Guided by Cullen’s convexity principle they interpreted the gradient
of the modified pressure as an optimal transport map. By interpreting the SG equations as an
optimal transport problem, Brenier and Benamou provided powerful new analytical tools and
insights, opening the door to rigorous results on the existence and regularity of solutions. This
remarkable insight was rapidly expanded and refined by a number of mathematicians whose col-
lective contributions provided a robust theoretical foundation and deeper understanding of the
geometric and variational structure underlying SG flows [3, 12, 32-36, 38]. Their work not only
advanced mathematical theory but also laid essential groundwork for practical computational
methodologies.

Ultimately, this fruitful synergy between meteorology and optimal transport theory culmi-
nated in the work of Egan et al. [29] and Benamou et al. [6]. Leveraging the optimal transport
formulation, they developed innovative particle-based computational methods capable of sim-
ulating large-scale atmospheric dynamics with remarkable resolution and fidelity, specifically
capturing sharp fronts and complex discontinuities characteristic of real-world atmospheric
phenomena.

The present thesis continues and extends their pioneering efforts. Here, we generalize the
existing numerical semi-discrete optimal transport methods from two to three spatial dimen-
sions, extending the rigorous mathematical analysis from the incompressible to the compressible

SG equations. Additionally, we leverage these theoretical advances to build novel numerical
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simulations of compressible atmospheric flows, and deepen our understanding of the intrinsic
geometry that defines the optimal transport formulation of the SG equations.

For a comprehensive and rigorous introduction to the mathematical and physical background
of large-scale atmospheric phenomena and the semi-geostrophic equations, the reader is referred
to the authoritative monograph by Cullen [19] as well as [44].

Viewed in a broader mathematical context, the deep link established by Brenier and Ben-
amou between SG theory and optimal transport might appear natural rather than surprising.
Indeed, it was precisely Brenier’s fluid-dynamics perspective that initially inspired his cele-
brated polar factorization theorem, enabling the proof of existence for an optimal transport
map in the quadratic cost case, one of the landmark results of modern mathematics [10]. In
retrospect, the interplay between optimal transport and fluid dynamics emerges as fundamen-

tally interconnected, underscoring the profound unity between these fields.

1.2 History of Monge and Optimal Transport

Optimal transport, much like meteorology, has a colourful history. Popular lore claims that
Gaspard Monge was asked by Napoleon for the optimal manner in which his troops could dig
defensive trenches and build artillery ramparts with the displaced dirt. However, this story is
most certainly apocryphal as Monge first introduced the optimal transport problem in his 1781
memoir when Napoleon was only 11 years old and enrolled in school in Autun. The true origin
of optimal transport begins with Monge’s time at the prestigious Ecole du Génie at Mézieres,
a military engineering school. While there Monge designed military fortifications such that
an enemy could neither see nor fire upon a protected position, regardless of the enemy’s line
of sight. In order to do this Monge reformulated the problem as one of intersecting surfaces
and lines in three dimensions. This work eventually earned him the title as the “Father of
Descriptive Geometry”. Monge’s formative experiences at Mézieres shaped the trajectory of
his intellectual interests. Immersed in an environment of military engineers, Monge turned his
powerful geometric insight toward problems of direct practical importance. One such class of
problems was the movement of earth for construction. Building fortifications, canals, roads,
or reservoirs often required excavating soil in one place, déblais, or “cuts”, and depositing it
in another, remblais, or “fills”. The efficiency of these projects depended on minimizing the
labour of transporting huge volumes of material.

In, Mémoire sur la théorie des déblais et des remblais [56], Monge was explicitly motivated
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by military applications and fortress construction. In this treatise Monge posed, in rigorous
terms, what is now recognized as the first statement of the optimal transport problem: given
two volumes of soil, one to be excavated and one to be filled, find the way to move the soil
that minimizes the total transportation cost. Monge assumed the cost of moving an elemental
parcel of soil is proportional to the distance it is carried, essentially formulating a variational
problem to minimize the work of transport with respect to the ¢!-norm. He described the
soil as composed of infinitely many “molecules of earth” that need to be relocated from their
initial positions to new target positions. The mathematical challenge was to determine a
mapping from the initial volume to the final volume that minimizes the integrated distance.
Monge intuited that the optimal mapping has a certain geometric structure: in his words, the
transporting paths should be such that they do not intersect each other. In modern optimal
transport theory, this property corresponds to the solution being c-cyclically monotonic. Monge
would later go on to be one of the co-founders of the Ecole Polytechnique. But within his native
Burgundy, Monge’s legacy can be seen as part of a continuum: Navier’s and Darcy’s, also native
Burgundians, later achievements in fluid mechanics and hydraulics echoed Monge’s paradigm
of applying analytical thinking to solve practical engineering issues. And it is the work of the

Monge and Navier in particular that we will carry forward in this thesis.

1.3 Outline of the Thesis

The thesis is structured around the application and theoretical development of semi-discrete
optimal transport techniques for solving the SG equations. In Chapter 2 we present a mesh-free,
three-dimensional numerical scheme for the incompressible SG equations, significantly general-
ising prior two-dimensional implementations. We show this approach conserves energy enabling
robust and efficient numerical simulations exemplified by a benchmark cyclone problem, the
first fully three-dimensional simulation of its kind. Building on these numerical developments,
in Chapter 3 we rigorously establish the existence of global-in-time weak solutions of the com-
pressible SG equations with compactly supported measure-valued initial data. Our analysis
employs a particle discretisation strategy coupled with optimal transport theory, generalising
previous results of [24] and providing a solid theoretical foundation for numerical approxima-
tions. In Chapter 4 we investigate conditions related to the domain geometry and seed and
weight configurations that yield the necessary regularity of integrals defined over Laguerre cells,

enhancing our understanding of stability and regularity properties within semi-discrete opti-
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mal transport frameworks. In Chapter 5, we develop a novel semi-discrete optimal transport
scheme tailored specifically to the compressible SG equations. Finally, in the Conclusion we

will summarise the results of this thesis and briefly present some open problems.

1.4 Notation

We adopt the following standard notation:

o We make extensive use of the following constants: g > 0 is the acceleration due to gravity;
feor > 0 is the Coriolis parameter, which we assume constant for the thesis; 6, > 0 and
po > 0 are reference potential temperature and pressure, respectively; v = ¢,/c, > 1 is
the adiabatic index; Ry = ¢, — ¢, > 0 is the specific gas constant for dry air, with ¢, > 0
and ¢, > 0 being the specific heats at constant pressure and volume, respectively; and

k= co(Ra/po)” " > 0.

e X C R% denotes the fluid or physical domain with d = 2 or 3. This is also referred to
as the source space. We assume that X is nonempty, connected, compact, and that it

coincides with the closure of its interior.
e V C R? denotes the geostrophic domain, also referred to as the target space.

e C(Y x R) denotes the space of real-valued infinitely-differentiable and compactly sup-

ported test functions on Y x R.
e Cy(R?) denotes the space of real-valued continuous and bounded test functions on R¢.

e 7 denotes the d-dimensional Hausdorff measure.

Let S be a subset of R? and let d > 0 be a dimension. Consider all possible countable
covers of the set S by sets {U;} where the diameter of each set, diam(U;), is less than

some small number § > 0. For a given §, we have

HL(S) = inf {i (diam(U;))*: S C D U;, diam(U;) < (5}. (1.1)

Then the d-dimensional Hausdorff measure, denoted H%(S), is given by

HYS) = (lsi_r%Hgl(S). (1.2)
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e For a Borel set A C X, 14 : X — {0,1} denotes the characteristic function of the set A.

That is

1 if xeA,
La(x) =
0 otherwise.

o P(A) denotes the set of Borel probability measures on A C R
Let A be a topological space and B(A) be the Borel g-algebra on A. A Borel probability
measure on A is a function u : B(A) — [0, 1] that satisfies the following two properties:
1. Normalization. The measure of the entire space is one, i.e. u(A) = 1.

2. Countable or o-additivity. For any countable sequence of disjoint sets A;, As,... €
B(A), the measure of their union is equal to the sum of their individual measures,

le.
M(U Ai) = Zﬂ(Az‘)- (1.3)
i=1 i=1
o Z,.(A) denotes the set of Borel probability measures on A C R? that are absolutely

continuous with respect to the Lebesgue measure.

e Given a Borel map S : A — B and a measure p € #(A), the pushforward of p by S is
the measure Syp € P (B) defined by Syu(U) = p(S~H(U)) for all Borel sets U C B.

o Z.()Y) denotes the set of Borel probability measures on ) with compact support.

e We will abuse notation slightly and use the same symbol to denote the probability density

function and the measure, i.e.

/A () dx = / dpu(x). (1.4)

e In what follows the subscript ¢t on a dependent variable denotes evaluation at time ¢. For

example p;(x) it the measure p at time t.
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1.5 Optimal Transport Theory

The optimal transport problem, as originally formulated by Monge, assumes one has a source
measure, o € P(X), on a source space, X C RY and a target measure, « € 2(Y), on a
target space, Y C RY, and seeks a mapping T that pushes o forward to «, i.e. Tyo = «, while

minimizing the total transport cost. Written in modern mathematical terms this is as follows

T:X—Y
Tyo=a

T.= inf /X ¢(x, T(x)) do(x), (MP)

where 7. is the optimal transport cost of moving ¢ to a according to the cost, ¢: X x Y — R.
The minimizing map 7' is the optimal transport map. Unfortunately for us, this optimization
problem has a highly non-linear constraint, 7»0 = «, i.e. that the target measure « is the push-
forward of the source measure o under the transport map 7. In Monge’s classical example, the
cost was the ground distance travelled, ¢(x,y) = ||x — y||. This formulation is geometrically
natural but notoriously challenging, in no small part due to the push-forward constraint. Note

that the push-forward constraint is equivalent to the conservation of mass.

FExample 1.5.1. Consider, for simplicity, a fully discrete optimal transport problem where the
source measure is a Dirac mass located at the origin, and the target measure is given by two

equal Dirac masses at separate points,
1 1
oc=9 and a= 55_1 + 551. (1.5)

Although this represents a perfectly well-posed and intuitive scenario for transporting one unit
mass from a single pile into two separate, equally sized piles, no optimal transport map exists,
regardless of the cost function, precisely because the act of splitting mass from one point to
multiple destinations would constitute a one-to-many mapping, which violates the definition of

a map.

Indeed, Monge’s original problem lacked general existence results and remained open until
the pioneering work of Kantorovich in 1942 [45]. Kantorovich relaxed and generalized (MP) by
allowing transport plans instead of strict maps. A transport plan is a measure 7 € Z(X xY)

on the product space, X XY, coupling ¢ and a, so that y(AxY) = 0(A) and v(X x B) = a(B)

10
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for all measurable A C X and B C Y. Kantorovich’s problem is written as follows:

T.= inf cdr, (KP)

'YGF(O',Ol) XxY

where I'(o, «) is set of transport plans, i.e.
L(o,a) ={y € (X xY): (nx)py =0, (my) sy = a}, (1.6)

where my and 7y are the canonical projections onto X and Y respectively. The key generalisa-
tion of Kantorovich was that he now allowed mass to be split. Intuitively, 7(x, y) represents how
much mass is moved from location x to location y. Monge’s problem is recovered as the special
case where 7 is concentrated on the graph of a function 7T, i.e. no mass is split. Kantorovich’s
formulation turns the transport problem into a linear optimization problem over the convex set
of plans, which is much easier to analyse. In particular, at least one optimal plan exists under
mild conditions, by the direct method of the calculus of variations. Furthermore, under addi-
tional regularity conditions, one can often show that an optimal plan is induced by a map. For
example, Brenier’s Theorem [10] guarantees that for the quadratic cost, ¢(x,y) = [jx — yl?,
on R™, if the source density o is absolutely continuous, the optimal plan is unique and is given
by a transport map T'(x) = Vp(x) where ¢ is a convex potential. In such cases the optimal
mapping satisfies a Monge—Ampere type equation, reflecting the fact that T" pushes o to «,
i.e. det D?¢p adjusts the volume change to match the density . The Kantorovich relaxation
thus provides both the assurance of existence and a powerful framework to investigate further
properties of optimal transport solutions.

Because the optimal transport problem in (KP) form is a linear programming problem with
linear constraints, one can introduce a dual variational problem that plays a fundamental role
in the theory. The Kantorovich dual formulation secks functions ¢ € Cy(X) on the source and

Y € Cp(Y) on the target that maximize the total “benefit”

T. = max /X(pdo+/y¢da, (DP)

pdY<c

subject to the affordability constraint ¢(x) + 1(y) < ¢(x,y) for all x € X and y € Y. Eco-
nomically, ¢ and ¢ can be interpreted as optimal “price” functions on mass at the source and

target locations, respectively, enforcing that no transport x — y yields net profit, since oth-

11
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erwise one could increase ¢(x) + 1(y) until the inequality ¢(x) + ¥ (y) < c¢(x,y) saturates.
Duality theory guarantees that an optimal pair (¢, ) exists and that the minimum transport
cost equals this maximal dual value. Moreover, one can show that optimal ¢ and v can be
chosen to satisfy ¢(y) = ¢°(y), where the c-transform ¢°(y) := infxex {c(x,y) — ¢(x)} is an
analogue of the Legendre transform. In particular, v can be taken to be c-concave, meaning
that ¢ = ¢° for some ¢. Such ¢ and v are called Kantorovich potentials. Kantorovich potentials
provide a great deal of structural insight. For instance, they encapsulate optimality conditions:
d(x)+¢°(y) = ¢(x,y) on the support of any optimal plan. They also enjoy regularity properties
mirroring those of the cost ¢: for example, if ¢(x,y) = ||[x — y||” and X and Y are compact,
any optimal potential ¢ is Lipschitz continuous when p > 1.

The formulation (DP) is particularly valuable because, even in situations where the optimal
plan is not unique, the optimal potentials, ¢, 1, are uniquely determined up to an additive
constant. This uniqueness underpins stability results and connects optimal transport to other
areas; for instance, ¢ can be seen as a generalized solution of a Hamilton—Jacobi type PDE
and often carries geometric information about the transport problem. Moreover, the dual
formulation provides a framework for proving existence of optimal plans via standard convex
analysis arguments.

For a comprehensive and rigorous introduction to optimal transport theory, the reader is
referred to the authoritative texts by Santambrogio and Friesecke [39, 59]. For a deep dive into

numerical optimal transport the reader is referred to the text by Peyré and Cuturi [57].

1.5.1 Semi-Discrete Optimal Transport Theory

For us the most important branch of optimal transport theory that has emerged is the so called
semi-discrete optimal transport where the source measure is absolutely continuous with respect
to the Lebesgue measure and the target measure is discrete. We denote by X C R? the compact
set representing the source space, and by )V C R? the target space. We fix N € N and define

the set of seed vectors by

DN .= {z = (zl,...,zN) e YV : 2" # 27 whenever i #j}. (1.7)

12
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We also define the set of admissible weights

AN = {m:(ml,...,mN)6(0,1]N;Zmi:1}, (1.8)

and the class of discrete probability measures with N atoms as

N
2N(Y) = {Zmiézi :z € DY, mEAN}. (1.9)
i=1

Given a continuous cost function ¢ : X x )Y — R, a source measure ¢ on the source
domain X', absolutely continuous with respect to the Lebesgue measure, and a discrete target
measure o € 2V (Y), the Monge formulation of optimal transport asks for a measurable map

T : X — Y pushing o forward to o, i.e. Tywo = ¥, that minimizes the total cost

/X ¢(x, T(x))or(x) dx. (1.10)

Because the target measure is discrete, the transport map 7" must be piecewise constant, and
the solution amounts to partitioning X into a collection of cells { L}, such that each cell L
is mapped to z' and has o-measure equal to m’. This setup captures many problems, ranging
from computational geometry to optics, and it leads to a beautiful geometric description of the

optimal map in terms of weighted Voronoi tessellations, called Laguerre tessellations.

Definition 1.5.2 (Voronoi Tessellation). Let P = {p1,pa,...,Pn} be a finite set of points in
R?. The Voronoi cell C}, corresponding to a site py, is the set of all points x € R? whose distance

to py, is less than or equal to their distance to any other site p;. In other words

Cp ={x:d(x,pr) <d(x,p;) Vj#k}, (1.11)

where d(x, p) is the Euclidean distance. The Voronoi diagram or tessellation is the collection

of all the Voronoi cells, Cj.

To describe these Laguerre cells, we introduce a vector of weights, w = (w!,... w") € RY,

associated to the seeds.

Definition 1.5.3 (c-Laguerre tessellation). Given (w,z) € RY x DV the c-Laguerre tessella-
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tion of X generated by (w,z) is the collection of Laguerre cells {Li(w,z)}Y, defined by
Li(w,z):={x€ X :c(x,2') —w' <c(x,2) —w! Vje{l,...,N}}, (1.12)

forie{1,...,N}.

In order to guarantee that the tessellation has desirable properties we need to introduce the

following condition on the cost function.

Definition 1.5.4 (Twist Condition). A cost function c is said to satisfy the twist condition if

it is differentiable for every point x € X, the map y +— Vyc(X,y) is injective for every xo € X.

While we present the twist condition here due to its role in guaranteeing properties of the

tessellation, it plays a substantial role in all formulations of optimal transport.

Example 1.5.5. The classical examples of twisted costs are ¢(x,y) = |[|[x —y||” for p > 1 and

x,y € R, The compressible cost in Chapter 3 is also twisted.

Under the assumption that the cost function satisfies the twist condition, the c-Laguerre cells
form a tessellation of X in the sense that (J\\, Li(w,z) = X and £¢(Li(w,z) N Li(w,z)) =0
if i # j, by [53, Proposition 37]. Intuitively, changing the weight vector shifts the boundaries of
the Laguerre cells, thus controlling their volumes. The twist condition is a standard assumption
in optimal transport theory; it not only guarantees that the cells partition the domain, but also
that the solution of the optimal transport problem is in fact a unique map.

With these Laguerre cells in hand, we define the associated semi-discrete transport map as

follows:

Proposition 1.5.6 (Semi-Discrete Transport Map). Let 0 € Po.(X) be absolutely contin-
wous. Fir a cost c: X x Y — R that satisfies the tuist condition. For a weight vector
w=(w,...,w") e RN define
N
T(x) =Y 211500 (x). (1.13)

i=1

1. Optimality for the Induced Target Measure. For every w € RY the map T is well

defined o-a.e. and transports o onto

N
= Z szz

14
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Moreover T is the optimal transport map for the cost ¢ between o and .
[58, Proposition 37]

2. Existence of Weights for a Prescribed o. Conversely, given any probability measure
o= Zf\;l m'd, with m' > 0 and Y, m' = 1, there exists a weight vector w € RY (unique

up to an additive constant) such that
o(Li(w,z)) =m', ie{l,...,N}

and the associated map T defined by Fq. (1.13) is therefore the optimal transport map

from o to «.
[58, Theorem 40]

It is insightful to visualize the effect of the weight adjustment in two dimensions.

FExample 1.5.7. Set d = 2 and consider a cost function

1
x.y) = gl - I (1.14)
transporting
| X
= 1% t — Ogi 1.15
o 0 « N; (1.15)
such that m’ = +. Initially, with w = 0, {Lé(w,z)}ﬁil is an unweighted Voronoi diagram

where the cell areas generally do not match the m?, as seen in Figure 1.1a. By progressively
tuning the weights w, the cell areas can be made to increase or decrease as needed. At the
optimal w*, all cells L’(w*,z) have area o(L’(w*,z)) = m’, meaning each seed z' captures

exactly its allotted mass. The resulting partition {L:(w*,z)}.,, after optimizing the weights,

i=1
is a Laguerre diagram whose cells each contain equal mass, as seen in Figure 1.1b.

Further geometric properties of these optimal Laguerre partitions, such as regularity of cell
interfaces or centroids (see Definition 1.6.1), will be explored exhaustively in this thesis. In
summary, the semi-discrete case provides a convenient and intuitive picture of optimal trans-
port: the map can be thought of as carving up the continuous domain into cells of the right

masses and assigning each cell to a target point at minimal cost. Each Laguerre cell acts like
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a “catchment basin” for mass that travels to the corresponding site, and the optimal weights

w* adjust these basins to perfectly match the target distribution.

(a) Voronoi Diagram (b) Laguerre Diagram

Figure 1.1: A Voronoi diagram and the corresponding Laguerre diagram where the weights
have been optimized such that all the cells have the same mass with respect to the Lebesgue
measure.

For a comprehensive and rigorous introduction to semi-discrete optimal transport theory,

the reader is referred to the authoritative text by Mérigot and Thibert [53].

1.6 The Semi-Geostrophic Equations

In this thesis, we are primarily concerned with the analysis and simulation of the SG equations,
a system of partial differential equations used to model large-scale geophysical flows such as
atmospheric fronts and ocean currents. We consider four variants of this system, distinguished

by whether the fluid is compressible or incompressible, and whether the domain is two- or
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three-dimensional. Despite their differences, all variants share a common structural form:

(
Dyu, = Momentum Forcing,

D, = Thermodynamic Forcing,
Continuity of Mass, (1.16)

Balance Relations,

Boundary Conditions,
\

where D; = 0, + u - V denotes the material derivative with respect to the full velocity of
the fluid u(x,t) = (ui(x,t),us(x,t), u3(x,t))T, while the geostrophic velocity is denoted by
u,(x,t) = (u(x,t),v(x,t),0)”. The full fluid velocity is related to the geostrophic velocity via

u=u,+u, (1.17)

where u, is the ageostrophic velocity, i.e. the component of the fluid velocity which is out of
geostrophic balance. The SG equations describe the evolution of two primary state variables:
the geostrophic velocity u,(x,t), and the potential temperature 6(x,t), both advected by the
full velocity field u(x,t). The exact form of the momentum and thermodynamic forcing terms,
as well as the mass continuity equation, depends on the physical assumptions of the system
under consideration. In the incompressible setting, the continuity equation takes the standard
divergence-free form V-u = 0, and the momentum equation is coupled to the thermodynamics
only through buoyancy /stratification effects related to hydrostatic balance. In the compressible
settings, the continuity equation evolves the density p(x,t) of the fluid. This introduces a more
complex interaction between the dynamics and thermodynamics. Dimensionality further mod-
ifies the system. In the three-dimensional setting, all components of the velocity and potential
temperature gradients are retained. In two dimensions, vertical structure is suppressed, and a
modified thermodynamic forcing term must be introduced to account for the absence of one
component of the geostrophic velocity. This ensures consistency with the balance constraints
of the SG approximation and prevents unphysical drift in the potential temperature field.

In Sections 1.6.1 and 1.6.2 we detail the reformulation in Lagrangian coordinates for two SG
models, compressible and incompressible, in three dimensions, in detail. A complete derivation

of the SG equations, beginning from the full primitive equations and applying the SG scaling
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and coordinate transformation, is presented in Chapter 5 in the two-dimensional compressible

case.

1.6.1 Incompressible PDE

We begin by considering the incompressible semi-geostrophic system in three dimensions in
physical coordinates. These equations arise as an approximation of the Euler-Boussinesq equa-
tions under the geostrophic momentum approximation, and the assumption of geostrophic and
hydrostatic balance. To begin let the physical (source) space X C R3 be convex (in addition
to our general assumptions given in Section 1.4), and let the geostrophic (target) space Y = R3.
Define the source measure as 0 = £*L X and a final time 0 < ¢; < co. Recall that 0(x,1) is
the potential temperature and the definition of all the various physical constants outlined in

Section 1.4. Finally, we introduce the rotation matrix

0 -1 0
J = fcor 1 0 0]- (]-]-8)
0 0 O

Recall u(x,t) = (ui(x,t), uz(x,t), u3(x,t))" and u,(x,t) = (u(x,t),v(x,t),0)". Then the sys-

tem of SG equations for an incompressible fluid, given by [19, Eq. 3.2], is

;

Diuy, = J(u, — u) in X x [0,tf],
D6 =0 in X x [0, ],
V-u=0 in X x [O,tf], (119)

T
Vp - (fc()rv, —fcoru, QLQOG) in X x [07tf]7

u-n=0 on 0X x [0,],

\

where 10 is the unit outward normal to 0X. Define a coordinate transform 7; : X — Y by

x1 + foolv(x,t)
Ty(x) = | 2y — folu(x,t) |, (1.20)

cor

0(x,t)

_9
fé00
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which is the coordinate transform suggested by Hoskin’s in [42]. Notice that the temperature,
0, in Eq. (1.19) is constant. This arises from the adiabatic assumption which assumes that the
system is perfectly thermally isolated and there is no exchange of heat. For ¢ € [0,;] define
a € P(Y) by oy = (Ty) L3 L X. The goal of this section is to derive a PDE for «y, which we
call the potential vorticity [19, Section 3.2.3].

In preparation for the derivation, we examine Cullen’s convexity principle [19, Defini-
tion 3.2]. Cullen’s convexity principle asserts that a physically stable solution at each time
is one that minimizes the geostrophic energy under all admissible rearrangements of fluid par-
ticles. In practice, this principle is enforced by assuming that the modified pressure P(x,t) :=
p(x,t) + (21 + 23) is convex in the spatial coordinates [19, Definition 3.2]. This convexity
condition ensures both physical stability, i.e. preventing any spontaneous, unbalanced accelera-
tions or unphysical density configurations, and mathematical stability, i.e. selecting an energy-
minimizing solution [19, Theorem 3.3]. A key observation is that T; = V P. Indeed, since P(-, )
is convex, T; is the gradient of a convex potential and hence is the unique optimal transport
map for the quadratic cost for transporting o to oy [59, Theorem 1.48]. The cost function that
emerges from the energy for the three-dimensional incompressible system is the quadratic cost,
c(x,y) = %Hx — yH2 [8]. This optimal mapping property is fundamental for the subsequent
weak formulation, ensuring that any weak solution respects the energy convexity principle and
thus remains physically and mathematically well-behaved.

Now we derive a PDE for a;. First take the material derivative of Eq. (1.20) :

uy + folDw U +u — g
1.19
DT= | us— =10 | "2 | o+ 0 —wp | =y = J(T) — 1d). (1.21)
oy 0

Via the definition of the material derivative, this implies that
0T, = —(VT))u+ J(T; — 1d). (1.22)

Consider a test function ¢ € C2°()). Then

d d

G | etaoty) = § [ omion) ax (1.23)
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_ /X Vo (Ty(x)) - 8T (x) dx (1.24)
= [ V(i) - (~(VT0)u + I(Ti(x) — x)) dx (1.25)

—/XV[SO(Tt(X))]'udXJr/XVSO(Tt(X))‘J(ﬂ(X)—X)dX (1.26)

= [ om0 nax— | omeop- aare (1.27)
" /X Ve (Ty(x)) - J(T,(x) — x) dx (1.28)
= | Veltix) - I(Tix) = T (7)) ax (1.29)
- /y Voly) - J(y — T, (y)) dou(y). (1.30)

Therefore
% y y) day(y / Vo(y y,t) da(y), (1.31)

where

w(y,t)=J(y =T, (y)), (1.32)

which is the geostrophic velocity in geostrophic coordinates, i.e. uy(x,t) = w(7;(x),t). Equa-

tion (1.31) holds for all ¢ therefore the continuity equation in geostrophic coordinates is

Oy + V - (aqpw) = 0. (1.33)

We can discretize this PDE by plugging in the particle approximation

a(z) = Z miézé. (1.34)

In order to discretize the PDE, we define the centroids of the Laguerre cells associated with

our discretization.

Definition 1.6.1 (Centroids). Given (w,z) € RY x DV the corresponding Laguerre tessella-

tion {L{(w,z)}Y,, and a measure o on the Laguerre cells, the centroid of the Laguerre cells is
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defined by
C:=(C,...,C"), (1.35)
< 1
C = —/ x do(x). (1.36)
m' Li(w,z)

For the incompressible problem the measure o on the Laguerre cells is the Lebesgue measure.

Starting with the right hand side of Eq. (1.31) we can write

/ Violy) - wly. 1) dau(y) = / Ve(y) - Jy dai(y / Voly) - JT N (y) day).  (137)
y y

Note by applying Proposition 1.5.6 we find

/ Voly) - JT, Hy) doy(y / V(T (x)) - Jxdx (1.38)
y

:i/ (z}) - Jxdx (1.39)

al 1

= Z Vi(z) - m'J— x dx (1.40)
i=1 m Li(w,z)

= V() - m'JC(z,), (1.41)

where C? is the centroid of the i-th Laguerre cell. Therefore

/ng@( ) - Jy dow(y /th I (y) doy(y Zm V(zy) - J(z; — C'zy)). (1.42)

On the other hand, the left hand side of Eq. (1.31) yields

N
d i iy L i
T s o(y) dou(y =% g m'o(z!) ;:l m'V(z}) - zy. (1.43)

Combining equations (1.37), (1.42), and (1.43) gives
Z m'V(z Z m'Vp(z) — C'(zy)). (1.44)
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Since ¢ is arbitrary, the discrete particle dynamics are governed by the following coupled system

of ODEs:

z, = J(z; — C'(z)), i€{l,....,N}. (1.45)

We will solve this system numerically in Chapter 2.

1.6.2  Compressible PDE

Now we consider the compressible semi-gesostrophic system in three dimensions in physical
coordinates. As before these equations arise from the Euler equations under the geostrophic
momentum approximation, and the assumption of geostrophic and hydrostatic balance. To
begin let the physical space X C R? satisfy our standard assumptions (see Section 1.4). Let
the geostrophic space ) C R? x (5, %) for 6 € (0,1). Recall that p(x,t) is the fluid density and
6(x,t) is the potential temperature. Furthermore, as before define a final time 0 < ¢; < oo
and recall the definition of all the various physical constants outlined in Section 1.4. We also
introduce the Exner pressure I1(x,¢), which fulfils the role of a pressure-like variable in the
compressible framework while accounting for density variations. For a dry ideal compressible

gas, the Exner pressure and standard pressure are

v—1
1= <de9> , (1.46)
Do

p = pRyOIL. (1.47)

Taking the logarithm and then the gradient of Eq. (1.47) gives

Vp_Vp V0, VI

. 1.4
PR R (1.48)
Similarly, taking the logarithm then the gradient of Eq. (1.46) yields
VII Vp Vo
- X2+ YT, 1.4
o024 ) (1.49)
Combining Eq. (1.48) and Eq. (1.49) leads to
Vp v VII
L _' 1.
p y—11I (1.50)
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Multiplying Eq. (1.50) by p/p, substituting Eq. (1.47) and using the identity ¢, = vRy/(y — 1)
gives

1
;Vp — ¢,0VIL (1.51)

Finally, as before, we introduce the rotation matrix

0 —1 0
J=fex|1 0 0] (1.52)
0 0 0

Recall u(x,t) = (ui(x,t),ua(x,t),uz(x,t))" is the full velocity of the fluid and u,(x,t) =
(u(x,t),v(x,t),0)T is the geostrophic velocity. Then the system of SG equations for a com-
pressible fluid, given by [19, Eq. 4.1], is

(Dyu, = J(u, —u) in X x [0,tf], (1.53a)
D =0 in X x [0,¢], (1.53b)
Dip+pV-u=0 in X x [0,tf], (1.53c)
VI = (feorV, —feortt, —g)"  in X x [0, 1], (1.53d)

(u-n=0 on X x [0,t¢], (1.53e)

where again 1 is the unit outward normal to X . Again we take the coordinate transform as
suggested by Hoskins [42] :
x1 + foolv(x, 1)
Ty(x) = | o3 — fotu(x,t) |- (1.54)
0(x,t)
Define a new quantity o,(x) = p(x,t)0(x,t) and assume that at t = 0, [, op(x)dx = 1. By
combining Eq. (1.53b) and Eq. (1.53¢) we find

p(Df) +0(Dyp+ pV -u) =0
<~ pd+00;p=—pu-VO—0u-Vp—pdV -u

(1.55)
<~  p0+00;,p ==V - (phu)

<~ 8t0t =-V. (O’ﬂl).
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Note that

d / dO't / 8t0t dx (156)

—/ V - (o0u) dx (1.57)

X

:/ oo B dH? = 0, (1.58)
oxX

by Eq. (1.53e). Thus we can conclude that o, € P (X) for all t. For ¢ € [0,tf], define
ay € Z(Y) by ay = (1) 4. The goal of this section is to derive a PDE for «.

In order to derive the PDE for the measure «;, we first take the material derivative of

Eq. (1.54) :

u + fcf)%Dtv U +u— U
DTy = [ us— 2D | "2 |ty 40—y | =1, = J(T, - 14). (1.59)
D,0 0
As before, this implies that
ol = —(VTyu+ J(T; — 1d). (1.60)

Now we are ready to formally derive the PDE. Consider a test function ¢ € C2°()). Then

< yw(y)daxy):% | Ty doifx) (1.61)
= [ Vi) amix) do(x) + [ p(Tix)a(x) dx (1.62)

= [ Ve (<(VTx)u+ I () ~ ) dey ) (163)

- | #Bx)V - (i) ax (1.64)

_ /X VIp(T:(0))] - udoy(x) + /X V(Ty(x)) - J(Ty(x) — x) doy(x) (1.65)

- /X H(TUx)V - (0(x)) dx (1.66)
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_ /X H(T(x))V - (on(x)u) dx — / o(Ty(x))u - dH? (1.67)

oxX

+ /X V(Ty(x)) - J(Ty(x) — x) doy(x) (1.68)

- [ AT - (e fxm) dx (1.69)

- /X Ve(T(x)) - J(T(x) — T (T(x))) doy(x) (1.70)
= | Vel) - Iy =T ) deu(y) (1.71)
Therefore
G e = [ Vo) wiy. day), (1.72)
where
w(y.t)=J(y — T, '(y)), (1.73)

which is the geostrophic velocity in geostrophic coordinates. Note that u,(x,t) = w(7}(x),1).

This holds for all ¢ therefore the continuity equation in geostrophic coordinates is

6tat + V- (O./tW) =0. (174)

Notice that this PDE is nearly identical to the incompressible PDE, given in Eq. (1.31). The
only difference is that when we discretise it the centroids are defined with respect to a dynamic
source measure o rather than the constant Lebesgue measure. Thus the ODE system / particle
approximation to this PDE is identical, modulo the change to the centroid, to the ODE system
for the incompressible problem.

We further establish that the coordinate transformation 7; defined by equation (1.54) is

indeed an optimal transport map. To this end, we introduce a potential function ¢; defined as

. R\ .
¢t = _CUVH (1:46) —CyY (_d> 0-771 (§1:4) _,170-7*1' (175)
Do

To understand the origin of this potential, consider the total geostrophic energy of the system
given by
E,(t) = / g( >+ 0%) + gprs + cupllf dx, (1.76)
X
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which is the sum of the kinetic, potential, and internal energy contributions. By Eq. (1.54),
Eq. (1.76) can be rewritten as

Eg(t) = F(Ttuatao‘f/)

(1.77)

/27{:0@ _T't(x)l)2—|—<$2—ﬂ( )))‘f'th dO’t /fO't

where the internal energy density f is defined by

ksY if s >0,
f(s) = (1.78)

+00 otherwise.

An optimal transport cost function, ¢ : X — ), emerges naturally from this representation of

energy, and it is given by

2 2

x
2O () — y1)2 + 2;;; (rgy — y2)2 + gy—;)’. (1.79)

The Cullen convexity principle says that F'(-, 0y, a;) is minimised over all mass-preserving re-

arrangements of fluid particles, i.e. that solutions of Eq. (1.53) should also satisfy

F(E, O¢, CYt) = min F(St, O¢, Oét) = %(Ut, at) -+ / f(O't) dx =: E(Ut, Oét), (180)
X

(St)por=ay
where 7. is the optimal transport cost as defined in (MP).

Formal Proposition 1.6.2. ¢, is c-concave for all t if and only if T} is the optimal transport

map that transports o, to ay according to c.

Remark 1.6.3. At first sight the hypothesis that the potential ¢, is c-concave may seem arbitrary.
It is, in fact, the compressible analogue of Cullen’s convexity principle for the incompressible
model (see Section 1.6.1). In the incompressible setting the modified pressure

P(x,t) =

(27 +23) + p(x,t) = = (2] + 23) — (—p(x,1)) (1.81)

N | —
N =

is required to be convex. A standard result in optimal transport, [59, Proposition 1.21], is that
this convexity implies that —p is c-concave for the quadratic cost. Demanding c-concavity of

¢ with respect to the compressible cost therefore plays exactly the same structural role in the
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present context: ¢, replaces —p in Cullen’s principle. Moreover, ¢; is not merely an auxiliary

potential; it represents the negative enthalpy, a quantity with clear physical meaning.

Formal Proof of Proposition 1.6.2. This proof is only formal as it proceeds by direct calcula-
tion, assuming that the potential ¢;, and the relevant physical quantities are sufficiently smooth
(i.e., differentiable) for the gradient operations to be well-defined. Assume that ¢, is c-concave
for all t. First note that the gradient of the cost with respect to the spatial variable x is given
by
fow(1 = 1)
Vet ¥) = = | 2,0~ ) | (1.82)
g

Evaluating this at y = T;(x), and combining equations (1.54), (1.53d), and (1.51) we obtain

O, P
1 1
VXC(X7E(X)> - _E a:(;gp - _U_th (183)
Py

Notice that

. Rapf\ """ R\ . R\
p<1:46>peRd< ;f) :Rd(p—j) o7 LY wcv—cU)(p—d) 07 = k(y — L)o7. (184)

Therefore
1
Vie(x, T1(x)) = ——k(y — 1)Vo] = —k(y — 1)y0] *Voy. (1.85)

O

On the other hand, computing the gradient of the potential ¢, gives
Vo, = —kyVo] ' = —ky(y — 1)o] *Voy. (1.86)

By comparison, we observe

Vac(x, Th(x)) = Ve (x). (1.87)

The assumption that ¢, is c-concave then ensures, by [59, Theorem 1.47], that T; is precisely
the optimal transport map that transports o, onto a; according to the cost ¢, and that ¢, is an
associated Kantorovich potential.

Now assume that T; is the optimal transport map that transports o; to «a; according to c.

27



Chapter 1: Introduction

Let ggt be an optimal c-concave Kantorovich potential for transporting o; to a; with cost ¢. By
[59, Proposition 1.15],
Vie(x, Ty(x)) = Vi (x). (1.88)

Combining this with Eq. (1.87) we conclude that V¢, = V%t and hence up to a constant

5,5 = ¢;. Therefore ¢; is c-concave because ggt is. O
Finally, we show that o; minimizes the total energy E(-, o).
Corollary 1.6.4. If ¢, is c-concave for all t, then o, minimises E(-, ay).

Proof of Corollary 1.6.4. In Chapter 3 we prove that F(-, ;) is strictly convex and has a unique
minimiser (see Lemma 3.2.4). Define o/ to be the unique minimiser of E(-, ;). We want to
prove that o = o;. At the minimum o} of E(-, oy), the first variation must vanish, giving the

necessary and sufficient conditions [59, §7.2] :

@7 (x) + f(07 (%)) = £ onspt(oy),

oF(x) + f'(of(x)) > ¢ everywhere,

(1.89)

for some constant ¢ € R, where ¢; is an optimal Kantorovich potential for transporting o} to
oy with cost ¢. This constant ¢ is a Lagrange multiplier that arises because the minimisation
of the energy, F(-, ay), is a constrained optimisation problem. The search for the minimizer o}

is restricted to the set of probability measures, which must satisfy the constraint

/ of(x)dx = 1. (1.90)

Unlike in unconstrained optimization where the gradient must be zero, here the first variation
must only vanish for perturbations that preserve the total mass. The constant ¢ ensure that this
condition is met, representing the marginal cost of enforcing the mass constraint. Consider
the quantity ¢; + f’(0¢). Note that by Proposition 1.6.2 ¢; is an optimal Kantorovich potential

for transporting o; to a;. On the support of o;, we have
O+ f'(0r) = =] +yro] " =0, (1.91)

and off the support of oy, this trivially vanishes as oy = 0 and f/(0) = 0. Thus, o, satisfies the

first-order optimality conditions and, because F(-, ;) is convex, it is also a minimizer of the
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total energy. Therefore, we conclude that o, = o7}. O]

Now that we have verified that T} is indeed an optimal transport map, the full system in

geostrophic coordinates is

.
3,504,5 + V . (OétW) =0 in y X [07 tf])

w = J(d—T;Y),

(1.92)

o, = argmin E(-, ay),
UEL@aC(X)

T; is the optimal map from o; to a4.
\

In Chapter 3 we prove the existence of weak solutions of this system using a particle approxi-
mation.

We have formally show that Eq. (1.53) implies Eq. (1.92). Now for completeness, we give a
formal proof that Eq. (1.92) implies Eq. (1.53).

Formal Proposition 1.6.5. Let (04, ay) satisfy equation (1.92). Define uy, 6, u, and p by
Eq. (1.97), Eq. (1.101), Eq. (1.102). Then equation (1.53) is satisfied.

Formal Proof of Proposition 1.6.5. This proof is formal because, as before, we assume that ¢,
and the relevant quantities are sufficiently differentiable for the gradient relationships to be well
defined. For E(o, a;) defined in Eq. (1.80), note that o, = argmin, ¢ 5, (v) £(0, a;), implies that

the following FEuler-Lagrange equations hold:

¢+ f'(oy) =€ on spt(oy),

éc+ f'(0y) > € everywhere,

(1.93)

where ¢, is the optimal Kantorovich potential for transporting o; to «; with cost ¢. These

Euler-Lagrange equations imply that

Voo, = =V (f'(01))oy. (1.94)

Since ¢y and T} are optimal, we know from [59, Proposition 1.15] that

Vi (x)o4(x) = Vye(x, Ti(x)) oy (x). (1.95)
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Thus it is immediate that

Vel () = V(£ (7))o (1.96)
Define u(x, ) and v(x, t) and 6(x, ¢) in terms of T; by
u(,6) = furl (TG0 = ),
0(x,t) = feonla2 = (Ti())2), (1.97)
b(x.1) = (T(x))a

Combining Eq. (1.82) and Eq. (1.97) we find

_fcorv
1
VXC(X7 711‘/(X)) = 5 fcoru : (198)
g
Define Il = o/ ~!. Then by the definition of f,
/ (1.78) y—1 _
—V(f'(o))or =" —kyV (0] )or = —cp(VI)oy. (1.99)
Therefore,
feorv
o | " —0Vex, Tix) "2 0V (f (o)) o L e b0,V (1.100)
-9

which is geostrophic and hydrostatic balance (see Eq. (1.53d)).

Next define
0y(x)
t) = ) 1.101
By [59, Theorem 5.14], there exists a velocity u such that
atUt+V' (UtU) =0. (1102)

Consider a test function ¢ € C>°()) such that ¢(7T;(x)) = 0 for all x € 9X. Then by the weak
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form of the PDE for oy (see Eq. (1.62) and Eq. (1.63)),

/X Vo(Ty(x)) - Ty (x) dory(x) + /X H(T(%))By02 () dx (1.103)
:/XVgo(Tt(x))~(—u~VTt(x)—|—J(Tt(X)—x))dat(x) (1.104)
- /X STy %))V - (00(3)) dx. (1.105)

Since this holds for any such ¢, and using Eq. (1.102), we can isolate

0iTi(x) = —u- VTi(x) + J(Ti(x) — x). (1.106)

Then Eq. (1.97) implies
Dy, = J(u, —u), (1.107)
D =0, (1.108)

which are Eq. (1.53a) and Eq. (1.53b). Then combining Eq. (1.102), Eq. (1.108) and Eq. (1.55)

we get the continuity equation for p :
Dip+pV-u=0. (1.109)

Finally, start again from the weak form of Eq. (1.74) and consider any test function ¢ € C°())
(not necessarily satisfying ¢(73(x)) = 0 for x € 0X’). By the weak form of the PDE for a4,
Eq. (1.102) and Eq. (1.106),

/ p(Ty(x))u - adH? =0, (1.110)
oxX

for all test function ¢, and we conclude that u-fi = 0 on 90X, recovering the Neumann boundary

conditions, Eq. (1.53e). This completes the proof. O

Remark 1.6.6. While the full velocity is not divergence free, the geostrophic velocity, w, is. To
verify this formally, let S, = 7,! and let the pair (¢,;) be optimal potentials for transport

from o to a; according to cost ¢. Then

Vie(Si(y),y) = Vibu(y). (1.111)
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Recall that

(l‘zor(l‘1 - yl)
1 2
Vie(x,y) = " Jooe(T2 — 12)
g
Therefore

X cor (St (¥)1 — 1) Dy e (y)
" e (St(¥)2 —w2) | = | 9ptin(y)
g ay31/)t(Y)

Solving for S;(y) gives

Se(y)1 =1 + foor 30y i (y),

Si(y)e = Yo + foorysOytbe(y)-

Therefore

w(y,t) = J(y — Si(y))

_f;)?y38y1¢t(}’)
= | —feory30y,0:(y)
Ys — St(Y)S

= —Jeor 43I VUi(y)-
Then, recalling that the third row of J is zero,
V-w = 0y, wi + Oy, ws + Oy, w3
= —foor¥3(0y, (TVH), + 0y (TV),)

= - (ggys(_aww% + ayZ?let)

=0.

This proves, formally, that the geostrophic velocity, w, is divergence free.
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With these derivations complete, we see how intimately optimal transport is coupled to the
SG equations and have explained, at least formally, the relation between the physical PDE,
the PDE in geostrophic coordinates, and the ODE discretisation of the PDE in geostrophic

coordinates.
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Chapter 2

Incompressible 3D Numerics

2.1 Introduction

In this chapter we describe what is, to our knowledge, the first mesh-free three-dimensional (3D)
numerical scheme providing simulations of incompressible semi-geostrophic (SG) atmospheric
flows. In particular, we use this scheme to simulate the evolution of an isolated large-scale
tropical cyclone, supporting the applicability of the SG equations for modelling atmospheric
and oceanic phenomenon.

The SG system is a second-order accurate reduction of the Euler equations valid for mod-
elling large-scale atmospheric flows. Its significance in meteorology stems from the fact that the
system models the formation of fronts - mathematically, that it has a natural way to admit so-
lutions that continue past singularity formation. The recent success and interest in this system
is a consequence of its reformulation, due to Brenier and Benamou, as a coupled optimal trans-
port problem. Indeed, it is this reformulation that we exploit to devise an energy-conserving
approximation that models accurately the formation of fronts and cyclones.

The scheme we present is based on semi-discrete optimal transport techniques. Two-
dimensional (2D) reductions of SG dynamics, and of its incompressible Boussinesq parent
model, have been approached through several complementary analytical and numerical paradigms.
In the Lagrangian setting, Benamou et al. and Carlier et al. solve the SG equations with a fully
discrete optimal-transport solver regularised by entropy [6, 12]. A counterpart is provided by
semi-discrete optimal transport, which supplies a rigorous framework for Cullen’s pioneering
geometric method and has been investigated analytically both in 2D and 3D and simulated
in the canonical 2D Eady slice [8, 25, 29]. In contrast to the mesh-free optimal-transport
approaches, Yamazaki et al. examine the incompressible Eady-Boussinesq slice reproducing
quasi-periodic frontogenetic life-cycles using high-resolution Eulerian compatible-finite-element

solver that serve as a benchmark for the SG limit [68]. Together, the schemes of [6] and [68]
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provide reference diagnostics and convergence results against which we later qualitatively eval-
uate our 2D benchmark and 3D simulations. Although neither their solvers nor the present
one are strictly energy-conserving, all retain dissipation that is small relative to the kinetic
and potential-energy budgets, so all support credible long-time diagnostics. Our semi-discrete
optimal-transport framework should therefore be viewed as a complementary alternative for
long-time diagnostics. Schiar and Wernli [61], who originally proposed the initial conditions we
investigate, used an Eulerian spectral grid with centred finite-difference time stepping to solve
the SG equations. Fully discrete, entropy-regularised optimal-transport schemes are efficient,
energy-stable, and convergent. They represent both the source measure and the evolving target
measure on a finite discrete support and hence satisfy the semi-geostrophic equations only in
a discrete sense. One recovers a weak solution of the continuous system only in the joint limit
of vanishing entropic parameter [6, 12]. By contrast, in the semi-discrete approach the source
measure remains continuous while the target measure is discrete, so the resulting particle tra-
jectories are exact weak solutions of the Lagrangian form of the SG equations for every particle
number N [8, 29]. Our contribution is to present what is, to the authors’ knowledge the first
full 3D simulation of the formation of an isolated cyclone, developing from the benchmark set
of initial conditions given in [61]. We refer to this setup as a benchmark because the Schér and
Wernli initial conditions represent a canonical, widely recognised problem for semi-geostrophic
cyclogenesis. While previous studies have simulated this setup, they have typically been re-
stricted to reduced two-dimensional or quasi-3D contexts, such as evolving only the top and
bottom boundaries of the domain. Our work, therefore, does not serve as a benchmark for
direct comparison against existing full 3D results, as none exist. Rather, by providing the first
simulation of the cyclone’s evolution throughout the interior, we aim to establish a new, more
complete benchmark result for this canonical problem, against which other modern 3D solvers
can be tested and validated in the future. Our work to implement fully 3D computations is a
substantial extension of the method presented in [29].

In addition to the novel spatial particle discretisation, achieved using semi-discrete opti-
mal transport, we briefly investigate various explicit numerical methods to solve the temporal
evolution, focusing on balancing runtime with the relative error in the energy conservation.
While straight forward, this exploration is novel in terms of integrating an ordinary differential
equation (ODE) solver with an optimal transport solver.

We then implement our schemes, first demonstrating that the observed rate of convergence
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aligns with the theoretical predictions for the space and time discretisation (see § 2.4.2). We
then provide insights into large-scale SG flows and how they model the formation and develop-

ment of atmospheric fronts and cyclones.

2.1.1 Background and motivation

A central theme in the study of atmospheric and oceanic dynamics is the quest for models that
are both mathematically and numerically tractable and that approximate accurately the fluid
motion, at least within a set of specific physical constraints. An important system of equations
satisfying these requirements is the SG system. This system, which is derived under the assump-
tions of hydrostatic and geostrophic balance, is a second-order accurate reduction of the full
Euler system and is recognised for its effectiveness in modelling shallow, rotationally-dominated
flows characterised by small Rossby numbers. This contrasts with the quasi-geostrophic limit
which simplifies the dynamics by neglecting ageostrophic terms beyond the first order. By
retaining the second-order terms, the SG system more accurately represents ageostrophic flows
and frontal dynamics [19].

The SG system was introduced by Eliassen in 1949 [30] and later revisited by Hoskins in
the 1970s [43], who introduced geostrophic coordinates. It has played a pivotal role in our
understanding of large-scale (at length scales on the order of tens of kilometers) atmospheric
dynamics and of atmospheric front formation. The usefulness of the SG equations has been
exemplified in operational settings, such as their use as a diagnostic tool by the UK Met Office,
underscoring their value in meteorological practice [18, 19].

Mathematically, this system came to prominence following the pioneering work of Brenier
and Benamou [5], who showed how the SG system in geostrophic variables is amenable to
analysis using optimal transport techniques. This formulation is the one we use in this chapter
as the basis of our numerical investigation.

We use the SG system to model the evolution of an isolated cyclone, starting from a stan-
dard initial profile proposed by Schiar and Wernli [61]. Previous works, including those by
Hoskins, Schar and Wernli, were constrained by the breakdown of the transformation between
geostrophic and physical space in finite time, limiting the application of the SG system. In
contrast, our approach leverages the optimal transport formulation, which overcomes this limi-
tation and ensures that the transformation remains valid for all times - a fundamental advantage

that extends beyond simply improving simulations. While existing studies focus on 2D compu-
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tations of temperature and pressure evolution at the top and bottom boundaries, we go further
by simulating the full 3D dynamics, capturing both the exterior surfaces and the interior of the
domain.

The base state of this initial condition is a symmetric baroclinic jet combined with a uniform
barotropic shear component controlled by the shear parameter, A € R, and given in terms of

the non-dimensionalised pressure by

— 1 1
P(x) = 3 (arctan<1 jizgjs) — arctan(1 fzxg)) — 0.12z923 — EA($3 - ZE%) (2.1)

Importantly, this base state is harmonic and encodes the ramp-like structure observed in the

presence of weather fronts. The base state is then perturbed at the top and bottom of the

domain via the perturbation function given by

3
2

e = (oG () 5 () 62)
- %(1 - (351021)2 - <%>2> .

This perturbation is applied only to the temperature, i.e. to the derivative of the pressure with

Njw

respect to the vertical coordinate, x3.

Our study seeks to advance the numerical treatment of the SG model by simulating its flow
in 3D geostrophic space, continuing the research presented in [29] and iterated upon by [6, 12].
Specifically, we employ the damped Newton method recently developed by Kitagawa, Mérigot,
and Thibert [46] to evaluate numerically the semi-discrete transport map, which is equivalent
to computing an optimal Laguerre tessellation of the 3D space. This method represented a
significant advancement for numerical semi-discrete optimal transport methods and it aligns
with our goal to adopt a mathematically rigorous and consistent formulation of the geometric
method first proposed by Cullen and Purser [25]. This approach is particularly desirable in
view of its structural preservation qualities. It’s important to clarify that these qualities are
inherent to the semi-discrete optimal transport solver used for the spatial discretisation, rather
than a property of the temporal integration scheme. The present study employs a standard
ODE solver, not a bespoke or symplectic integrator designed for geometric conservation. Con-

sequently, we have not explored the relationship between the number of particles N and the
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necessary timestep size of the ODE solver. Establishing a rigorous "particle CFL’ condition to
describe the stability of coupling OT and ODE solvers in this manner remains an open problem.

Indeed, a crucial advantage of the semi-discrete optimal transport method over traditional
finite element methods such as [65, 68] is its capacity to preserve the underlying structures of
the equations being discretised, so that solutions obtained through this method conserve total
energy and simulate optimally mass-preserving flows within the fluid domain. Such character-
istics are not only mathematically appealing but also crucial for the physical reliability of the
simulations. This is particularly important when dealing with complex phenomena like frontal
discontinuities, which are mathematically described as singularities occurring in finite time.
Our numerical solutions, offer an accurate conservation of total energy, mirroring the physical
behaviours observed in natural fluid dynamics and potentially allowing new insights into the

understanding and prediction of atmospheric and oceanic phenomena.

2.1.2  Semi-geostrophic system in discrete geostrophic variables

In this section we provide the mathematical background for the model and explain, in brief, its
connection to optimal transport. Consider a compact convex set X C R?. X can be identified
with the physical or fluid domain. Furthermore, consider an open set Y C R3, usually called

geostrophic space. The SG system in geostrophic space [5], is given

82504,5 + diV(OétV[Oét]) = 0,

0 -1 0 (2.3)
via] = J(id — T, J=11 0 0],
0 0 0

where « : [0,7] — Z()) is a probability measure-valued map such that oy = a(t) € Z(Y)
and T': X — ) is the optimal transport map from 1y (the normalised Lebesgue measure on
X') to a4, the potential vorticity [19], with respect to a quadratic cost. In this case the optimal

transport map is defined as

—argmm/”x T(x)|]? dx,
T:-X—Y
T#ﬂx =t
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where T 1 is the pushforward of the probability measure 1y under the map 7' [59]. This
is the case that has been studied most extensively, and for which there is a fairly exhaustive
theory [59].

Fix N € N. In our particle discretisation of this problem the target measure, «;, becomes
the discrete probability measure o = + P 0zi(1), where z' are points in ) C R*. This yields
a system of N ODEs where the ith ODE is given formally by

z' = vla;')(2'),

v[e)'] (z) = J(z' — T~ !(z")), (2.4)

where T : X — Y is now the optimal transport map from 1x to the discrete measure a..

This is a semi-discrete optimal transport problem, with respect to the quadratic cost. It is
well known that its solution must be of the form T = % Zfil 1,:, where L* are cells forming a

covering of the space X. Rigorously, the i-th cell is defined, for i € {1,..., N}, by

Li:{xeX: |x —z'||? — w' < ||x —27|* — w’ Vje{l,...,N}},

where w/ € R guarantee that £4(L?) = % Thus the solution of this transport problem is
equivalent to solving for the optimal tessellation of the source space X'. For the quadratic cost,
this is given by the so-called Laguerre tessellation [53]. Note that Eq. (2.4) is only formal,
because T is not invertible since its inverse could map single points to regions, T~!(z') = L’
Hence we replace T7!(z') in Eq. (2.4) by the centroid of the cell L?. Then o is an exact
weak solution of Eq. (2.3) for the discrete initial data af’. The resulting ODE been studied

extensively [8] and is given by
z(t) = (z:(t),...,2" (1)), z = J"(z — C(2)), (2.5)
where JV € R3V*3V g the block diagonal matrix JV := diag(J,...,J), and C(z) € X" is the

centroid map, which identifies the centroid of each cell L of the optimal tessellation:

1

. x dx.
1Li(2)| J i

C(z) = (C'(z),...,C"(2)), C'(z) =
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It is also energy conserving, where the total energy of the system is given by

E(z(t)) = Z /L |x —2'()? dx. (2.6)

Numerically this problem is solved efficiently, for a very large number of point particles, via the
damped Newton method of [46] already mentioned. We then select a 4th order Runge-Kutta
(RK4) method as the one among existing ODE solvers for simulating the time evolution of the
flow that achieves the best balance between efficiency and energy-conservation properties. This

choice will be discussed further in § 2.4.

Remark 2.1.1. It would be desirable to establish that the numerical solutions converge to a
solution of the underlying partial differential equation (PDE) as the number of particles N tends
to infinity and the timestep size tends to zero. The result in [8] demonstrates convergence of a
subsequence as N — oo, but this is not a full numerical analysis convergence result. Moreover,
convergence of the full sequence may be challenging to prove, as the uniqueness of weak solutions
to the underlying PDE is not known. In contrast, for the entropy-regularised fully discrete
optimal transport scheme [12], convergence of the fully discrete scheme is established for € > 0,

providing a stronger theoretical guarantee in this setting.

2.1.83  Qutline of the chapter

In Section 2.2 we reproduce the 2D results of [29] and [6] in order to validate and benchmark our
code. In Section 2.3 we present and discuss the 3D initial conditions used in our simulations
which are informed by the work of [61] and are designed to generate an isolated large-scale
tropical cyclone. We stress that, unlike [61] and other existing results that use these initial
conditions to simulate the cyclone just on the surface of the domain, we compute numerically
the evolution of the full 3D problem. In the last section we collect figures, showing both the
evolution of the geostrophic particles and of the cells in physical space, that illustrate the
evolution of the computed cyclonic flow. Finally in the technical details at the end we show

how the initial condition for the cyclonic flows is derived.
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2.2 2D Benchmark

2.2.1 Incompressible Fady Slice

First we introduce the incompressible Eady slice model. This will serve as the benchmark for
our code as the Eady slice model has been extensively studied and simulated. To begin let
the physical (source) space X C R? be convex (in addition to our general assumptions given
in Section 1.4), and let the geostrophic (target) space Y = R?. Define the source measure as
o= L?LX and a final time 0 < t; < co. Recall that 6(x,t) is the potential temperature and
the definition of all the various physical constants outlined in Section 1.4. Finally, we introduce

the rotation matrix
gs 0 —1

J =
90 f cor \ | 0

(2.7)

Note that in two dimensions we advect v(x, t) with the in-slice velocity ug(x,t) = (u1(x,t), uz(x,t))T.
Note that we are “in-slice” so x = (w1, 23)" and V = (0,,,0,,)". Then the system of SG equa-

tions for an incompressible fluid in two-dimensional physical coordinates given by [29] is

( gs

Dtv + fcorul - _9_1'3 in X x [O,tf],
0
Dy = —sv in X x [0,,],
V-us =0 in & x [0,%], (2.8)

T
Vp = (fcorv, QLH) in X x [0, ],

us-ﬁ:() oné)Xx[O,tf],

\

where 1 is the unit outward normal to dX. As in the Introduction we define a coordinate

transform 7; : X — ) by

1+ f(;)%U(Xu t)
Ti(x) = ; :
(x) x4 (2.9)

g
GOfCQor
For t € [0,tf] define ay € 2(Y) by oy = (T;)4L*L X. The goal of this section is to derive a
PDE for a;. Recall the arguments presented in § 1.6.1. These same arguments apply in the

two-dimensional setting guaranteeing that 7; is in fact a unique optimal transport map for the

quadratic cost transporting £2L X to ay. With this in mind we first take the material derivative
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of Eq. (2.9) :

u + D\ @s [ur—u — 7 FE—1x;
Dtﬂ — , fcor (:) o QOfCor (210)
7780 Dif T 2007

(2:9) ul Ul Qofcor .ZC3 — 9 gs 1'3 . (211)
e funlli & —) W\ T,

Via the definition of the material derivative, this implies that

Consider a test function ¢ € C2°()). Then

d d

G [ eaonty) = [ emion) ax

- [ Ve amix) ax
= | V) (<(VTix)us + Jx — (Tix) - 1)6) dx
—— | Ve usdx+ [ TelTi0) - Jx = (Tix) - e0)er) dx
= [ BV wsdx— [ pnius na
+ [ VelTi0) - Jx = (Tix) - e0)er) dx
= [ Vo) I(1 @) — (i) - @0)8) dx

_ /y Vely) - J(T7(y) = (v - &1)é1) on(y) dy.

Therefore
/ () dhauly) dy = / Vely) - wly, arly) dy. (2.12)
N Yy

where

w(y,t) = J(T; ' (y) = (y - &1)8é1), (2.13)
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which is the geostrophic velocity in geostrophic coordinates. Equation (2.12) holds for all ¢

therefore the continuity equation in geostrophic coordinates is

6tat + V- (O./tW) =0.

We can discretize this PDE by plugging in the particle approximation

Starting with the right hand side of Eq. (2.12) we can write

/)}Vgp(y)- w(y,t)day(y /Vgo JT H(y) doy(y /Vgp J(y-€1)ér day(y).

Note, as was done in Section 1.6.1, by applying Proposition 1.5.6 we find

/ V(y) - JT;  (y) day(y) = / Vi (Ty(x)) - Jx dx
y

N
= / V(zy) - Jxdx
i—1 Li(w,z)
Y 1
= Z Vp(zy) -m'J— x dx
i—1 m' Li(w,z)

where C' is the centroid of the i-th Laguerre cell. Therefore

/yW)(Y)-JTt ) deu(y /Vw J(y - €1)é1day(y)

Z J(Ci(zy) — (2 - &1)&1).

On the other hand, the left hand side of Eq. (2.12) equals

N N
d d o A
5 ), P dety) = G 3 mie(al) = S omViotel) -
=1 i=1

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



Chapter 2: Incompressible 3D Numerics

Combining equations (2.16), (2.21), and (2.22) gives

Zm Veo(z) - 2y = Zm Veo(z) (Ci(zt) — (2 - él)é1)~

Since ¢ is arbitrary, the discrete particle dynamics are governed by the following coupled system

of ODES :

= J(C'(z) — (z;-&1)&1), i€{l,....N}| (2.23)

Egan et al. in [29] first studied the application of a semi-discrete optimal transport scheme
to solve the 2D incompressible SG equations. Given z(t) = (z'(¢),...,z" (t)) € R*" the ODE

for the 2D system is

for i € {1,..., N}, where Z' denotes the initial position of the i-th seed.
The energy for the 2D system, up to a constant depending on the physical parameters of
the problem, is given by

En( ;z( I — 2 (6P dx - (z;<t>)2/i1dx),

which is the relevant reduction of the full 3D energy given by Eq. (2.6). Benamou et al. [6]
built upon this foundation by implementing a fully discrete scheme, significantly enhancing
simulation resolution. To validate our code, we replicated these results, employing Egan’s
technique in conjunction with Benamou’s improved resolution. This enhancement was facili-
tated by advanced numerical schemes developed by Mérigot and Leclerc [50]. We utilised the
‘unstable normal mode’ scenario detailed in section 5.2 of [29] as a benchmark for our code.
In contrast to [29], whose highest resolution simulations were done with N = 2678 particles,
our simulations were done with N = 64284 particles which is similar to the number of points
used by [6] (N = 65536). As shown in Figure 2.1, our implementation conserves total energy
with a relative error on the order of 107, comparable to the implementations in [6, 29]. Tt’s
important to distinguish between two sources of error: the spatial discretisation error, which
depends on the number of particles N, and the temporal conservation error, which reflects

how well the initial discrete energy is preserved during the simulation. The relative error we
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report here pertains to the latter. This conservation error is primarily a function of the ODE
solver’s accuracy and the chosen timestep. While the optimal transport solver is essential for
the stability of the scheme, the drift in the total energy over time is introduced by the temporal
integration. This study does not analyse the error in the initial energy value due to the particle
discretisation. Egan et al. used a timestep of 30 seconds and Benamou et al. used a timestep
of 91.44 minutes. For our benchmark we employed a timestep of 30 minutes. Notably, with
these advanced numerical schemes, we achieved a relative error comparable to the one in [29]
but with a timestep 60 times larger. Furthermore, as illustrated in Figure 2.2, the system’s
evolution over the first 10 days aligns visually with the previous results of [6, 29], where we
observe the formation of a weather front and its subsequent oscillations. In order to generate
the plots we extract the meridional velocity (v) and temperature (#) from the seeds positions,
N

v(x,t) = G ) (2(t) = Ci(z, (1)) 11:(x)

=1

O(x,t) = Cy > zb(t)11:(x),

=1

where C, Cy € R are physical constants (see [29]).

1e—5 Evolution of Error in Total Energy

Error in Total Energy

0 2 4 6 8 10
Time (Days)

Figure 2.1: The plot shows the evolution of the relative error in the total energy as defined in
Eq. (2.26). The total energy fluctuates about 2.415¢10.
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t ~ 4 Days t ~ 10 Days

& & e % 3 b
3 3
Meridional Velocity (m/s)

|
~
o

Temperature (C)

Figure 2.2: In the first row we display the evolution of the perturbation of the meridional
velocity field in the physical space (X'). In the second row we display the evolution of the
positions of the geostrophic particles (in )). Finally, in the third row we display the evolution
of the perturbation of the temperature field in physical space. Over the course of 10 days we
observe the formation and evolution of a weather front.

2.3 3D Benchmarks

To initialise our computations, we require a suitable initial condition. Here we explain how
we generate physical initial conditions for the 3D incompressible SG equations. The initial
condition presented simulates the formation of an isolated large-scale tropical cyclone with or

without initial shearing winds.
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2.3.1 Initial condition generating an isolated semi-geostrophic cyclone

In order to construct the initial condition for ODE (Eq. (2.5)) we need to find the initial seed

positions z. These will be given by
z%{m+ﬂ@m

where the transport map, 7' = Id + f, is the gradient of a convex function, which is physically

interpreted as the modified pressure. This means that the initial condition will be given by
7' =x'+ Vo(x'),

where the x? are points in a uniform grid on the domain X, and

(1,29, 73) = B(21, 79, 73) + D, (21, T2, 73)

satisfies A® = 0. Note that Laplace’s equation arises from linearising of the Monge-Ampere
equation (see § 2.5.1 for more details). Thus in order to construct the initial condition we need
to solve for the full pressure field. Notice, however, that the steady state modified pressure ®,
Eq. (2.1), is harmonic. Therefore, to find the full pressure field we just need to find the effect
that the perturbation of the temperatures on the surfaces has in the bulk of the domain. Thus

we only consider ® that satisfies

/

qD(-,=b,-) = (-, b, ), (2.24)
:997@; 23=0 = 0].5]1(1’1, (L’Q),
o = —0.6h(z1 + 1, 29).

\ 813 Tr3=c

The solutions of the system (2.24) on a cuboid domain X = [—a, a] X [—b, b] X [0, ¢| approximates
the effect that the surface perturbations have on the bulk. The solution satisfying the given
boundary conditions, suitably adjusted for compatibility can be found explicitly (see § 2.5.2).
We use the values for a, b, and ¢ suggested in [61] : ¢ is the height of the lid set to be 0.45

which corresponds to a physical height of 9 km, a is 3.66 and b is 1.75, which corresponds to a

47



Chapter 2: Incompressible 3D Numerics

channel (periodic in z) of area 14640 x 7000 kilometers.

2.4 Results

2.4.1 Numerical Method

The numerical method we employ consists of two main components, an optimal transport solver
coupled with an ODE solver. For the optimal transport solver, we utilised the Pysdot package
to generate Laguerre diagrams and solve the optimal transport problem using the damped
Newton algorithm. Detailed information on this approach can be found in [29, 50, 53]. To
enhance the stability and speed of convergence of the damped Newton algorithm, we applied
a specific rescaling and translation of the initial configuration of geostrophic particles. Further
details on this technique are provided in the work of [55]. After obtaining the centroids of the
Laguerre cells from the optimal transport solver, we applied a classical RK4 scheme to solve
the ODE.

A pseudocode for the numerical scheme is provided in Algorithm 1.

Algorithm 1: Semi-Discrete Optimal Transport Simulation with Weight Rescaling
Input: Initial particle positions zg, source domain X', final time 7, timestep dt.

Output: Final particle positions z..

for k <+ 0 to num_steps — 1 do
// Generate a stable initial guess for the 0T solver’s weights using
Meyron’s rescaling algorithm [55].

Weyess < GeneratelnitialWeights(zy, X);

// Solve the 0T problem using the generated guess. The solver
returns the optimal weights and cell centroids.

Woptimal Ck — SOlVGOT(Zk, Wgyess; X)v

// Compute particle velocities.

z, < CalculateVelocity(zy, Cy);

// Evolve particle positions forward in time.

zp+1 < RK4Step(zg, 2, dt);

return z;

The full code, including links to and instructions about dependencies, is publicly available and

can be found at: github.com/thelavier/3DIncompressibleSG
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Justification of ODE Solver

We experimented with several methods besides RK4, e.g. Adams-Bashforth 2 (AB2) and
Heun. Following the lead of [6] we ultimately chose RK4, even though it requires the solution
of 4 optimal transport problems per timestep. We chose this method because of its energy
conservation properties. Indeed, while [6] showed that there was no benefit in choosing a fourth
order method over a second order method when considering the 1, error with respect to a high
resolution solution, we show that RK4 actually demonstrates a better performance over lower
order methods in terms of energy conservation (see Figure 2.3). This property enabled us to
run 25-day simulations in 6-8 hours because, even though more optimal transport solves were
required, the step size could be much larger without affecting the conservation of the energy,

carrying forward the improvements observed in the 2D benchmark to the 3D simulations.

Comparison of ODE Solvers: Conservation Error

14 —— mainAB2 Comparison of ODE Solvers: Runtime
—— mainHeun

| — mainRK4

—— mainAB2
—— mainHeun
—— mainRK4

Log of Max Conservation Error

Log of Runtime [log(sec)]
~

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time Step Size T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
(a) Here a comparison is presented showing how Tme step sie
the log of the maximum relative conservation er- (b) Here a comparison is presented showing how
ror in the energy changes with solver and step the log of the simulation runtime changes changes
size. with solver and step size.

Figure 2.3: A comparison between AB2, Heun, and RK4 when coupled to an optimal trans-
port solver. These two plots demonstrate the trade off between run time, time step size, and
maximum relative error in the conservation of the energy. These plots support the idea that a
balance can be struck between runtime, step size, and maximum relative error if one wants to
run simulations in a “reasonable” amount of time.

2.4.2 FExperiments

All the numerical experiments that we ran and their key parameters are presented in Table 2.1.
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Wasserstein-2 Error
t~2d t~4d t~9d ¢t=~13d t~17d t=~21d t=~25d

n 1 6.8667e-10 1.1666e-5 0.0068  0.0300 0.9804 0.4346 0.3678
0.1 7.6761e-10 1.2229¢-5 0.0064  0.0291 0.0871 0.2140 0.3373
0.01 1.9691e-10 8.6135e-7 0.0038  0.0229 0.0740 0.1996 0.3042

0.001 - - - - - - -
hlsec] 10803.58 0.0091 0.0223 0.0866  0.3650 0.6162 0.5932 0.9808
7190.46 0.0022 0.0071 0.0393  0.1865 0.5765 0.7715 0.8195
5388.39 0.0014 0.0055 0.0428  0.1645 0.6625 0.9556 0.8565
3595.23 0.0007 0.0032 0.0351  0.1377 0.7114 0.9401 1.0594
2700.90 0.0004 0.0025 0.0331  0.1433 0.3229 0.5205 0.4602
1799.11 | 5.2552e-5 0.0017 0.0246  0.0939 0.4740 0.9702 0.6124

899.93 - - - - - - -
N 4096 0.1600 0.2594 0.6186  1.3901 1.8708 1.9466 1.4330
5832 0.1233 0.1503 0.4656  1.0459 1.4215 1.3115 0.8541
10648 0.0699 0.0939 0.3040  0.5674 0.9495 1.2798 0.9993
21952 0.0246 0.0315 0.1190  0.7100 0.7642 1.4379 0.8179

32768 - - - - - - -

Table 2.1: Wasserstein-2 error, as defined by Eq. (2.25), between simulations at the highest
resolution (reference solution) and lower-resolution simulations as parameters vary. This table
specifically presents errors resulting from the ODE solver used for temporal integration, rather
than the damped Newton solver used for the optimal transport problem. The error dependence
on the solver tolerance (n), timestep size (h), and particle count (N) is shown. Simulations
investigating the impact of n were done with A = 3595.23 and N = 32768. Simulations inves-
tigating the impact of h were done with n = 0.001 and N = 32768. Simulations investigating
the impact of N were done with n = 0.001 and h = 3595.23.

Error Computation

In order to analyse the quantitative performance of our method, we consider the following error

(2.25)

1 & 1 o
Error(t) = W22 (N Z 6Z;;Lrue(t)7 N Z 5ZAPPTOX(t)> )

i=1 i=1

Here z,0(t) is the ensemble of seed positions generated by our finest-resolution run, which we

7

adopt as a surrogate “ground truth”, while z; .

(t) are the corresponding seeds produced by
the lower-resolution simulation whose accuracy we wish to evaluate. The squared 2-Wasserstein
distance between the two empirical measures therefore quantifies, in a physically meaningful
way, how far the approximate Lagrangian configuration deviates from the reference at time .
This allows us to analyse the effect of changing the three key simulation parameters : percent

tolerance of the optimal transport solver, time step size, and number of particles. We are also

interested the the ability of the solver to preserve averaged quantities, in particular the energy.
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In order to investigate this we also considered

Emean(z) B E(Z(t))
Emean(z) ’

Error in Total Energy(t) = (2.26)

where Fc.n is the mean of the total energy, averaged over the entire simulation time interval

[0, 7] and

Max Conservation Error = m[a,x] Error in Total Energy(t).
te|0,7

In order to compute efficiently the Wasserstein-2 error for our analysis, we employed Jean
Fedey’s GeomLoss package to compute the Sinkhorn divergence approximation of the Wasserstein-
2 distance [37]. The Sinkhorn divergence approximation of the Wasserstein-2 distance is an
efficient way of measuring the distance between two probability measures. All errors were com-
puted against a “ground-truth” simulation, defined as the highest resolution simulation. All

simulations were conducted using the RK4 method.

Results of Experiments

As shown in Table 2.1, for short durations such as day 2 and 4, we observe the expected reduc-
tion in error with respect to timestep size (h*) and particle count (N~2/3) [47], as illustrated
in Figures 2.4 and 2.5. However, as the simulation extends to 25 days, we observe a deterio-
ration in the accuracy, and the anticipated decay in error relative to the number of particles
and timestep size no longer holds. This decline is not unexpected, as the solution develops
sharp fronts that are effectively singularities in the physical space. = The lack of significant
change in the error when varying the tolerance on the optimal transport solver is also unsur-
prising, as the damped Newton method often overshoots the specified tolerance. Consequently,
within reasonable bounds, the choice of tolerance for the optimal transport solver has a lim-
ited impact on the overall accuracy. Averaged properties of the system, such as total energy,
remain well conserved, as shown in Figure 2.6, indicating that while the accuracy degrades, the
overall physical integrity of the simulation is preserved. This highlights a crucial distinction
in the system’s stability: while individual particle trajectories exhibit sensitive dependence on
initial conditions (a Lagrangian instability), the overall macroscopic structures and averaged
properties of the flow are robust to small perturbations (an Eulerian or structural stability).

Therefore, even as the precise location of a single particle becomes unpredictable, the physically
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relevant collective behaviour, such as the shape of the developing fronts and the conservation
of global quantities, remains reliable.

To address issues with the accuracy of the ODE solver, we plan to follow up with a study
of the spectral properties of the system, particularly focusing on the centroid map, to better
understand this deterioration and develop methods that maintain higher accuracy over long-
term simulations. Preliminary analysis suggests that the issue may be related to a large relative
spectral gap in the eigenvalues of the centroid map. The suspected presence of this spectral gap
underscores why the loss of regularity presents a severe challenge for the temporal integration.
Standard ODE solvers are not designed to handle such behaviour over long periods, leading to
an accumulation of truncation error. The core difficulty lies not in the choice of a particular
ODE scheme (e.g., RK4 vs. others), but in the inherently stiff and non-local nature of the
system’s evolution, which is governed by the global optimal transport problem at each step.
Crafting a bespoke integrator that remains accurate in the presence of these evolving structures

is a formidable open research direction and might not even be possible.

Log-Log of Wasserstein-2 Distance with Particle Count at Day 2

1014

—e— logW?
Reference: N=23

Log of Wasserstein-2

oV 2 2\
Yl » N
QO ) ©

» < O

Log of Number of Particles

Figure 2.4: Log-log plot of the change in the Wasserstein-2 error at day 2 with respect to the
change in the number of particles (in blue). In orange is a plot of the theoretical best decrease
in the discretisation error with respect to the number of particles.
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Log-Log of Wasserstein-2 Distance with Timestep Size at Day 2

1024

10-3 1

—o— logW?
-~~~ Reference: h*

10~ 4

Log of Wasserstein-2 Distance

10-5 4

Log of Timestep Size

Figure 2.5: Log-log plot of the change in the Wasserstein-2 error at day 2 with respect to the
change in the size of the timestep (in blue). In orange is a plot of the theoretical best decrease
in the error with respect to the timestep size for Runga-Kutta 4.

1le—6 Evolution of Error in Total Energy
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Figure 2.6: The plot shows the evolution of the relative error in the total energy as defined in
Eq. (2.26). The total energy fluctuates about 3.799.
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2.4.3 Observations of Cyclones

In what follows is a qualitative discussion of the evolution of an isolated large-scale tropical
cyclone as controlled by the SG system. To aid in this discussion we extract the zonal velocity
(ZVel), meridional velocity (MVel), geostrophic velocity, total geostrophic velocity (TVel), and

temperature :

ZVel(x, 1) = 3 (Chlz(t)) — (1) Lui(x).

=1

MVel(x, t) Z H(2(1))) L (%),

u,(x,t) = (ZVel(x, t), MVel(x, t))"

TVel(x, t) Znug x, ) || 11 (x),

Temperature(x, t) Zzg Hlri(

We also compute the root mean squared velocity (RMSv) of the three different velocities

1
RMSv — \/}/X\v(x, PP dx,

to support our consideration of different initial shearing regimes.

In Figure 2.7, we observe the evolution of a 3D incompressible SG system where cold and
hot air masses are initially separated and subsequently mix. The series of images track the
development of this interaction over a period of 25 days. In rows one and three, the images
display the magnitude of the total geostrophic velocity in physical space (X). Initially, at ¢t ~ 4
days, a distinct front forms between the cold and hot air masses. As time progresses to t &~ 8
and t = 12 days, an instability along this front propagates, evolving into a chain of rotational
systems, indicative of cyclone and anticyclone formation.

Rows two and four depict the evolution of seed positions in geostrophic space ()), where
the temperature corresponds to the vertical position in the third dimension. The geostrophic

particles are color-coded to represent their vertical positions: blue for colder or “lower” and
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red for hotter or “higher”. At t &~ 4 days, the seeds are relatively evenly distributed along the
front. By t & 8 and t &~ 12 days, the seeds begin to cluster and spiral, showing the development
of vortices as the system becomes more dynamic.

By t = 16 days, the rotational structures become more pronounced, and by ¢ ~ 20 and
t =~ 25 days, the system displays fully developed cyclonic and anticyclonic patterns. This visual
evidence supports the conclusion that the initial instability evolves into a series of complex,
rotating systems. The continued development and interaction of these vortices demonstrate
the non-linear and chaotic nature of the 3D incompressible SG dynamics, while energy is
conserved throughout the process, as indicated by the stable total energy observed in long-
term simulations.

Figure 2.8 complements this analysis by presenting horizontal cross-sections of the tempera-
ture and velocity magnitude at different altitudes within the domain after 12 days of evolution.
These slices show the vertical structure of the flow, revealing the coupling between thermal
and dynamical processes. The interaction between cold and warm air masses drives the devel-
opment of baroclinic instability, leading to the characteristic rotation observed in geostrophic

systems.
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t ~ 4 Days t ~ 8 Days t ~ 12 Days

Magnitude of Total Velocity

Temperature

Magnitude of Total Velocity

Temperature

Figure 2.7: All images are done with the camera looking down on the top of the domain. In
rows one and three we see the evolution of the magnitude of the total geostrophic velocity (in
physical space, X') over 25 days. In rows 2 and 4 we see the evolution of the position of the
geostrophic particles over 25 days. In geostrophic space temperature corresponds to position
in the third dimension. In these images this is captured in the colouring of the particles.
Colder “lower” particles are blue and hotter “higher” particles are red. Simulation parameters:
N = 64000, n = 1073, and h = 30 min.

Shear Parameter

Finally, as demonstrated in the seminal works by Davies et al. [26] and Wernli et al. [66], the

impact of a shearing wind on cyclone development is significant, with the evolution of the system
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0 km
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Figure 2.8: Vertical slices of temperature (left column) and total velocity magnitude (right
column) at various altitudes (h = 0 km, 2.25 km, 4.5 km, 6.75 km, and 9 km) after 12 days of
simulation. The temperature distribution highlights regions of significant thermal activity, with
warmer areas denoted by red hues and cooler areas by blue, indicating the presence of convective
structures and stratification. The velocity magnitude plots reveal the structure of the flow, with
areas of higher velocity depicted in yellow-green, illustrating the dynamics of the developing
cyclone and associated turbulence. These slices offer a detailed view of the interaction between
thermal and kinematic fields throughout the bulk of the cyclone, emphasising the formation
and behaviour of flow structures across multiple atmospheric layers. Simulation parameters:
N = 64000, n = 1073, and h = 30 min.

being highly sensitive to the horizontal shear imposed at the initial time. These previous studies
explored how variations in background shear influence the formation and characteristics of

cyclonic and frontal structures. A key limitation they faced, however, was the loss of regularity
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of the transformation between geostrophic and physical space occurring between 4 to 8 days,
restricting their ability to investigate the long-term effects of the shear.

Our formulation overcomes this critical limitation, allowing us to maintain accuracy and con-
tinue the simulation beyond the breakdown observed in their models. This advantage enables
us to explore the extended dynamics of shearing effects on cyclogenesis over a 25-day period.
In Figure 2.9, we show how different initial shearing wind conditions (A = —0.5, A = 0, and
A = 0.1) influence the intensity and organization of rotational systems. Our results reveal
that with strong anticyclonic shear (A = —0.5), the formation of coherent rotational systems
is significantly disrupted, while weaker or cyclonic shear (A = 0.1) promotes the intensification
of cyclonic structures, mirroring the findings of [66], who observed pronounced differences in
cyclone development based on the sign and magnitude of the imposed shear.

Furthermore, as shown in Figure 2.10, which separates the wind velocity into zonal and
meridional components, the RMSv analysis highlights how shear conditions influence the bal-
ance between these components. For strong initial shear (A = —0.5), our results confirm that
the zonal velocity dominates, leading to less organized and smaller-scale rotational systems,
consistent with the findings by [26] where anticyclonic shear favored elongated cold fronts and
weaker cyclones. Conversely, when shear is weak or absent (A = 0 and A = 0.1), the merid-
ional velocity gains prominence, enhancing the development of more coherent cyclonic and
anticyclonic structures, in line with the cyclonic shear experiments reported by [66].

The ability to extend our simulations well beyond the timescales considered in previous
studies provides new insights into the stability and evolution of these systems under sustained
shear conditions. This prolonged analysis underscores the critical role of initial shearing in
dictating the long-term behavior of cyclonic structures, offering valuable extensions to the
meteorological applications highlighted in [26] and [66]. Our results not only corroborate the
sensitivity to shear observed in these foundational studies but also extend the understanding of
how these dynamics evolve over longer timescales, providing a richer perspective on the impact
of horizontal shear in geophysical fluid systems.

While providing detailed interpretations of the meteorological significance or specific atmo-
spheric structures observed in the simulations goes beyond the scope of the present work, our
results clearly demonstrate the utility of our optimal transport formulation. By replicating the
key features of the simulations by [66], we highlight the potential of our approach as a valuable

tool for investigating a broad range of SG atmospheric phenomena over extended timescales.
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This capability enables the study of complex dynamics that were previously inaccessible due

to the limitations of traditional numerical formulations.

A=-05 A=0

t ~ 18 Days t~ 11 Days t =4 Days

t =~ 25 Days

Magnitude of Total Velocity

Figure 2.9: Here we demonstrate how adding a background shearing wind to the initial condition
results in the disruption of or strengthening of cyclone formation over 25 days. In the first
column we see the effect of a strong shear wind completely disrupting cyclone formation in
the channel, in contrast with the no shear scenario in the second column, and the weak shear
scenario in the third column. Each image is a view on the top of the domain and the magnitude
of the total geostrophic velocity is being plotted. Simulation parameters: N = 64000, n = 1073,
and A = 30 min.

2.5 Technical Details

2.5.1 The Monge-Ampere and Laplace Equations

In this section, we justify the use of Laplace’s equation for establishing our initial condition.
The Monge-Ampere equation, related to the optimal transport map for the quadratic cost [10],
plays a central role in coupling the SG equations with a transport equation. If Vuy f = g, then

the potential u satisfies the Monge-Ampere equation given by

f(z) = g(Vu(z))det D*u(z) (2.27)
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Figure 2.10: Comparison of the evolution of root mean square velocity (RMSv) components
under different initial shearing conditions over 25 days. 2.10a Meridional RMSv: shows the
evolution of the y-direction velocity, with higher values indicating stronger meridional flow
under weaker initial shear (A = 0, A = 0.1). 2.10b Zonal RMSv: depicts the evolution of the
x-direction velocity, demonstrating dominant zonal flow under strong initial shear (A4 = —0.5).
2.10c Total RMSv: presents the combined effect of both meridional and zonal components,
illustrating the overall system dynamics under varying shearing conditions.

for source probability measure f : R” — R, target probability measure g : R" — R, and a

convex function u € C*(X). Linearizing the Monge-Ampere equation around the quadratic

potential leads to Poisson’s equation, where the right-hand side depends on the gradient of
the target measure. By neglecting this right-hand side, we obtain Laplace’s equation, which is
often used to approximate the initial condition in the quasi-geostrophic approximation. In the
case of an incompressible fluid the source measure is the Lebesgue measure so f(x) = 1. We

linearise Eq. (2.27) about
1
u(x) = QXTX
by adding the small perturbation e®(x) to u(x) to get
1 =g(x+eVe(x))det (I+eD*®(x)),

and then differentiating both sides with respect to € to get

0 = det (I+ eD*®(x)) digg(x +eVO(x)) + g(x + 5V(I)(X))di€ det (I 4 eD*®(x))

= det (I+eD*®(x))Vg(x + eVP(x)) - VO(x)

+ g(x + eVO(x)) det (T + £D>B(x)) tr ((1 +eD*d(x)) - D2<I>(x)).
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By setting ¢ = 0 and rearranging we arrive at

Ad(x) = —ﬁVg(X) V().

Now by neglecting the right hand side we have
Ad(x) = 0.

This resulting Laplace equation is solved to derive the initial condition for the isolated
large-scale tropical cyclone following the lead of [61].
2.5.2  FExplicit solution for the perturbation

In this section, we solve Laplace’s equation for the modified pressure, ®, decomposed as
B (21, w2, 23) = P21, T2, 13) + P21, T2, 23),

where ® is the background or steady state modified pressure and d is the perturbed modified
pressure. We do this to propagate the perturbation on the surfaces through the bulk of the do-
main. We consider a cuboid domain, subject to periodic boundary conditions in two directions
and Neumann boundary conditions in the third direction. We also ensure that the compati-
bility condition for the Neumann problem is satisfied before proceeding with the solution. We

begin with the Laplace equation
Ad(x) =0

in the cuboid domain [—a, a] x [—b, ] x [0, ¢|, with periodic boundary conditions in the z; and

2o directions, and Neumann boundary conditions in the x3 direction

oD oD
— = 0.15h(x1,22) and — = —0.6h(z1 + 1, z2),
8ZL‘3 z3=0 8x3 T3=C

where h(zy, ) is given by Eq. (2.2). Note that ®, introduced in Eq. (2.1), is harmonic. Thus,

we only need to solve
Ad(x) = 0.
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Before solving Laplace’s equation for 5, we need to ensure the compatibility condition is sat-

isfied. The compatibility condition requires that
Iy+ 1. =0,

where

a b
I() = / / 015h(1‘1, ZL’Q) d[L‘QdCCl
r1=—a J xo=—b
a b
[c = —/ / 06]1(5131 -+ 1,33'2) dﬂ?gdl’l.
r1=—a J xro=—b

This condition is necessary for the solvability of the Neumann problem. However, the Neumann
boundary conditions in [61] do not satisfy this condition. Therefore, we adjust the boundary
conditions to:

1.
dab’

= —06h(l'1 + 1,1’2) —

T3=C

With the compatibility condition now satisfied, we can proceed to solve Laplace’s equation. We

start by making the usual ansatz and expanding EIv)(xl, T9,x3) in a Fourier series

~ > > TINT TIMI
O(xy, 29, 23) = Z Z exp( " 1)exp( ; 2) Zpm(x3).

nN=—o0 MmM=—0o0

where Z, ,,,(z3) are the unknown coefficient functions to be determined. By substituting this
ansatz into the Laplace equation A&)(X) = 0, we obtain the following set of ordinary differential

equations for Z,, ,(x3):

d? 2
d_J;%Zn,m (l’g) - kn,mZ'ﬂ,m<x3)7

where ky,,, = 7 (%)2 + (%)2 The general solution for Z, ,,,(z3) is

Zn,m('rii) = Cn,m €xXp (kn,mx?)) + Dn,m exXp (_kn,mx3>7
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where C,, ,,, and D, ,,, are constants determined by the boundary conditions. Thus the solution

18

~ TINT T
O (21,29, 23) = Z Z exp ( 1)eXp( ; 2)(Cn7mexp(kn7mx3)+Dn,mexp(—k:n7mx3)).

n=—o0 m=—oQ

Next, we apply the Neumann boundary conditions at 3 = 0 and 23 = c to find C,, ,,, and D, ,.

First, we compute the derivative of ® with respect to 3

O > d TInT, TIMT
8_91:3 = Z Z kn,m exp ( a ) eXp ( b )(Cmm eXp(kn,mx?)) - Dn,m eXp(_kn,mxf)’))'

nN=—o0 MmM=—0o0

Now, we find the Fourier transforms of the boundary conditions. For the lower boundary

xs = 0, the Fourier coefficients A,,,, are given by

I TinT, Timas
A = 1
nm = /ﬂg1 y /m__b (O Sh(xy,zo) — 1a b) exp ( " ) exp ( 2 ) dzodx,.

For the upper boundary x3 = ¢, the Fourier coefficients B,,, are given by

1. TINT, TIML
By = 0.6h( 1 - — — — dxodzy.
4ab /f;l —a /:Eg——b ( xl + x2) 4 b) eXp ( a ) eXp ( b ) x2 a:l

We then solve the following system of equations to determine C,,,, and D,,, :

Anm = knm(Cnm - Dnm)

B = knm (Crm €xp (knm€) — Dy €xp (—kpm©))-

For the case n = m = 0, we set Cyy = Dgp = 0, which corresponds to the average perturbation
on the surfaces of the domain. With the coefficients C,,,, and D,,, determined, the initial
condition is fully established, and we are now ready to proceed with the numerical solution of

the system.
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Compressible Analysis

3.1 Introduction

In this chapter we study the compressible system formulated in terms of the so-called geostrophic
variables. In these variables, the governing evolution equation is a continuity equation for a
time-dependent probability measure ay, usually called the potential vorticity.! The equation

for ay is given by

Oy + V- (aeW]ay]) = 0. (3.1)

The non-local velocity field W[ay| (defined in (3.4) below) is known as the geostrophic wind.
It is defined at each time ¢ by minimising the geostrophic energy given the potential vorticity
a;. The PDE (3.1) is derived in [24] by starting from Euler’s equations for a compressible
fluid, assuming a shallow atmosphere in hydrostatic balance, a rotation-dominated flow, and
making the geostrophic approximation, which is valid for large-scale flows, then transforming
the resulting equations to geostrophic coordinates.

The main goal of this chapter is to construct global-in-time weak solutions of (3.1) as
the limit of spatially discrete approximations. This generalises and extends the semi-discrete
optimal transport strategy presented in [8] for the incompressible setting, a generalisation that
requires substantial changes and poses new technical challenges.

There are several benefits of using semi-discrete optimal transport: this approach highlights
an intuitive connection between flows in geostrophic coordinates and corresponding flows in
the fluid domain, it provides the means to construct explicit solutions, and it serves as the
theoretical foundation for adapting Cullen and Purser’s groundbreaking geometric method [25,

29] to solve the compressible SG equations numerically.

n physical terms, oy is the inverse of the physical potential vorticity; see [19].
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3.1.1  Summary of results

We denote by X C R? the compact set representing the physical fluid domain, and by Y C
R3 the geostrophic domain where the equations are defined after the change to geostrophic
variables. For further details about the assumptions on the fluid and geostrophic domains see
Section 3.2.1.

To define the geostrophic energy of the system, consider an absolutely continuous probability
measure o € Z,.(X). The measure o is a physical variable, representing the product of the fluid
density and potential temperature. For a given probability measure oy € Z?()) representing
the potential vorticity, let 7.(o, ay) be the optimal transport cost between o and o, given below
by (3.10), for the cost function ¢ : X x Y — R given by equation (3.9). The corresponding
geostrophic energy F(o,ay) is given by

E(o,aq) = To(o, a4) + /{/ o7 dx, (3.2)
x

where v € (1,2) and x > 0 are physical constants?. The geostrophic energy is the sum of the
kinetic energy of the fluid, its gravitational potential energy, and its internal energy.
The geostrophic wind W that appears in (3.1) is defined by minimising the geostrophic

energy over all 0. We show that this minimisation problem has a unique solution

o.loy] = argmin E(o, o), (3.3)
O'Ee@ac(x)
which we call the optimal source measure. Let T, denote the optimal transport map from o, |oy]

to ay for the cost c. Then the velocity field W[ay] : Y — R3 in (3.1) can be formally defined by

—1

W[Oét] =J (Id — Tojtl) 5 J = fcor ) (34)

o = O
o o O

0
0
where Id denotes the identity on ), and f.,, > 0 is the Coriolis parameter, which we take to be

constant. The optimal transport map T, exists and is unique because the cost function ¢ given

by (3.9) satisfies the classical twist condition. We can recover the physical variables from the

2Interpreted physically, v is the ratio z—", where ¢, is the specific heat at constant pressure and c, is the

v—1
specific heat at constant volume, and k = ¢, (%) , where Ry is the specific gas constant for dry air, and pg

is the reference pressure.
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components of T,,,. It can be shown that T, (x) = (z1 + f2v5(X,t), 12 — f2v](x,1),0(x,1)),
where v7 = (v{,v3,0) is the geostrophic velocity of the fluid and 6 is its potential temperature
[24, equation (5)]. In general, the transport map Ty, is not invertible, so equation (3.4) is only
formal; we give a rigorous meaning to the PDE (3.1) in Definition 3.2.6.

To state the first of our results, we formulate the discrete analogue of the PDE (3.1) by

making the discrete ansatz

O(iv = Zmiézi(t), (35)
where z'(t) € V. Let z(t) = (z'(t),...,2"(t)) € YN. Then this ansatz gives rise to the ODE
z=JY(z - C(z)), (3.6)

where JV € R33N is the block diagonal matrix JV := diag(J/,...,J), and C is the centroid
map, which is defined in Definition 3.4.2 (see Figure 3.1). This centroid map is the discrete

analogue of the map T,,;! appearing in (3.4).

(X,0.[a]) O Cia() (V,al)

Figure 3.1: On the left is the source space X coloured by the density of the optimal source
measure o,[a¥]. The boundaries and centroids C7(z(t)) of the corresponding c-Laguerre cells
are plotted in black, with the boundary of the i-th cell, L, highlighted in red. On the right is

the target space ) with the seeds z’(¢) in blue. The i-th seed, z(t), corresponding to the i-th

cell is highlighted in red. The union of the seeds is the support of the target measure o .

We now state our two main results. The notation we use is listed in Section 2. In particular,
by C%1([0, 7]; 22())) we mean Lipschitz continuity with respect to the W' Wasserstein metric
on &()) and the standard metric on [0, 7.

Our first theorem asserts the existence and uniqueness of solutions of the ODE (3.6) and

correspondingly of the PDE (3.1) with discrete initial data.
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Theorem 3.1.1 (Existence of discrete geostrophic solutions). Fiz N € N, an arbitrary final
time T > 0, and an initial discrete probability measure o = Zfil mid,; € PN(Y) that is
well-prepared in the sense of (3.15). Then there exists a unique solution z € C*([0,7]; DY) of
the ODE (3.6) with initial condition z(0) = (Z',...,z"). Define o¥ € C*1([0,7]; 2N (V)) by

N
Oéiv = ZmicSzi(t).
i=1

Then o is the unique weak solution of the compressible SG equations (in the sense of Definition

N

3.2.6) with discrete initial data o) = a™. Moreover, o is energy-conserving in the sense that

E(o.[al],al) = E(o,]a)],0ad) Vte|o,7].

Our second theorem states the existence of global-in-time weak solutions of the compressible

SG equations (3.1) for arbitrary, compactly supported initial data.

Theorem 3.1.2 (Existence of weak geostrophic solutions). Let 7 > 0 be an arbitrary final
time, and let @ € P.(Y) be an initial compactly-supported probability measure. Then there
exists a weak solution a € C¥Y([0,7]; P.(Y)) of the compressible SG equations with initial
measure @ (in the sense of Definition 3.2.6). Moreover, there exist discrete weak solutions
a™ e COY([0, 7]; 22N(Y)) of the compressible SG equations that approzimate v uniformly in the
sense that

lim sup Wi(al, a;) = 0.
N—=004¢0,7]

We stress that while the incompressible SG system considered in [8] involves the standard
quadratic cost and a fixed source measure, the compressible SG system involves a non-standard
cost ¢ and a time-dependent source measure, defined by the minimisation problem (3.3). This
presents new, significant challenges regarding the regularity of the centroid map C.

Our method of proof gives rise naturally to a numerical method. Indeed, to show that
the ODE (3.6) has a unique solution, we first derive a concave dual formulation of the energy
minimisation problem (3.3) in the case where «; is a discrete measure; see Section 3.3. We
show that this dual problem is solvable and that its solution can be used to define the optimal
source measure o,[a;|. While we do not compute numerical solutions here, the dual problem
is an unconstrained, finite-dimensional, concave maximisation problem, which is numerically

tractable. (The analogous problem with the quadratic cost is solved numerically for example
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in [60].) Hence the velocity field in the ODE (3.6) can, in principle, be computed numerically.
Importantly, solutions of the ODE (3.6) give rise to discrete, energy-conserving solutions of
the PDE (3.1). It has been observed in the incompressible setting that numerical solutions
inherit this conservation property [29, 48]. Implementing a numerical scheme based on these
observations would be a natural extension to the compressible setting of Cullen and Purser’s

geometric method [25, 29].

3.1.2  Background

The Navier-Stokes equations are the fundamental mathematical model used by meteorologists
to simulate the dynamics of the atmosphere and oceans. Since the viscosity of air is low, the
atmosphere is often modelled as inviscid, so that the diffusion coefficient in the Navier-Stokes
equations can be set to zero to obtain the Euler equations. At length scales on the order of
tens of kilometres, such flows develop singularities known as atmospheric fronts. These can be
modelled using the SG approximation, which is a good approximation for shallow, rotationally-
dominated flows (small Rossby numbers). This approximation was first formulated in 1949 by
Eliassen [30] and rediscovered in the 1970s by Hoskins [42]. Since then it has been studied
extensively (see for example the book [19] and the bibliography therein) and the SG equations
have been used as a diagnostic tool at the UK Met Office [18].

The SG approximation is based on two balances that dictate the dynamics of the system.
The first is hydrostatic balance, namely the assumption that the vertical component of the
pressure gradient is balanced by the gravitational force. The second is geostrophic balance,
which assumes that the first two components of the pressure gradient are balanced by the
Coriolis force [30]. The corresponding geostrophic wind (in physical variables) is a large-scale,
two-dimensional approximation of the fluid velocity and is directed along isobars.

From a physical point of view, the model described by the SG equations conserves the
geostrophic energy: the sum of kinetic, potential and internal energy. However, mathematically,
the equations do not appear to be in a conservative form, as is the case for the well-known quasi-
geostrophic reduction. This inconsistency was considered by Hoskins [42], who clarified the
mathematical structure of the incompressible SG equations by an ingenious change of variables

to the so-called geostrophic coordinates, sometimes called dual coordinates.
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3.1.3 Previous results

The change of coordinates to geostrophic variables was made mathematically rigorous in the
groundbreaking work of Benamou and Brenier [5], where the incompressible SG equations
are formulated in geostrophic variables as a transport equation coupled to a Monge-Ampere
equation. Brenier’s solution of the optimal transport problem for the quadratic cost in [10] was
used to prove the existence of global-in-time weak solutions of the incompressible SG equations
in geostrophic variables. This seminal work provided the foundation for much of the subsequent
analysis of the SG equations. Indeed, similar reformulations are established in [21] for the SG
shallow water equations and in [24] for the compressible SG equations, which we study in this
chapter, where the template of the proof given in [5] is used to prove global existence of weak
solutions.

In [24] the existence of global-in-time solutions of the compressible SG equations is estab-
lished for compactly-supported initial potential vorticity @ € L"(}) for r € (1,00). The case
r = 1 was added by Faria in [32]. We extend this result to @ € Z.()). However, in [24] the
term in the cost function ¢ representing the gravitational potential energy is taken to be any
C? function whose derivative with respect to the vertical variable is non-zero, which is more
general than the case we treat. The same result is proved in [23] using the general theory for
Hamiltonian ODEs in Wasserstein space developed by Ambrosio and Gangbo in [4]. Addi-
tionally, [23] presents a proof of the existence of weak Lagrangian solutions in physical space,
analogous to the results of Cullen, Feldman & Tudorascu for the incompressible SG equations
[20, 33, 35, 36].

In [8] a semi-discrete optimal transport approach is used to prove the global existence of
weak solutions for the incompressible SG equations for measure-valued initial data. Exact
solutions of the incompressible SG equations are constructed starting from spatially discrete
initial data. These discrete solutions are then used to approximate solutions for arbitrary
initial data. Similar existence results were already established in increasing levels of generality
in [5, 34, 38, 52]. The approach of [8] is distinct from those of earlier papers in its use of a
spatial discretisation based on semi-discrete optimal transport, rather than a combination of
time discretisation and spatial mollification as used in [5]. It is also distinct from the fully
discrete approach used to study a variant of the incompressible SG equations in [22], where
both physical and geostrophic variables are spatially discretised. While we cannot give here

an exhaustive reference list to what is now a very substantial body of work, other important
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contributions to the analysis of the SG equations include the works of Ambrosio et al. [1, 2]
and recent work on the incompressible SG equations with non-constant Coriolis term [62]. In
this chapter we assume that the Coriolis term is constant.

Numerical methods for the SG equations date back to the development of the geometric
method of Cullen & Purser [25]. More recently, major developments in the field of numerical
optimal transport have given rise to efficient numerical methods for solving the SG equations.
Semi-discrete optimal transport has been used to obtain solutions of the 2D SG Eady slice
equations [29] and the 3D incompressible SG equations [48], while entropy-regularised discrete
optimal transport [6, 12] has also been used to solve the Eady slice equations. Other applications
of semi-discrete optimal transport in fluid dynamics are studied for example in [40, 41]. The
finite element method has recently been used to solve a 2D version of the compressible SG

equations [67].

3.1.4 Outline of the chapter

Section 3.2 includes notation, background material, and the definition of a weak solution of
(3.1). In Section 3.3 we derive a dual formulation of the energy minimisation problem (3.3) and
in Section 3.4 we prove Theorem 3.1.1. Our main theorem, Theorem 3.1.2, is proved in Section
3.5. In Section 3.6 we give two explicit solutions of the compressible SG equations, namely an
absolutely continuous steady state solution and a discrete solution with a single particle. In
§ 3.7.1 we discuss a technical assumption on the fluid domain. In § 3.7.2 we prove a technical

lemma, Lemma 3.3.6, which is important for establishing the regularity of the centroid map C.

3.2 Preliminaries

3.2.1 Assumptions
Throughout this chapter we make the following assumptions:

e X C RR3 denotes the fluid domain. We assume that X is nonempty, connected, compact,
and that it coincides with the closure of its interior. Moreover, we assume that the set

®~1(X) is convex, where ® : R* — R? is defined by

D(x) = (fror @1, for @2, 9" (23 — 3 fer (2] + 23))) - (3.7)

In Section 3.7.1 we give examples of domains satisfying this assumption and show that it
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is equivalent to assuming that X' is c-conver [46, Definition 1.2], which is an important
notion in regularity theory for semi-discrete optimal transport. We require this technical

assumption to prove Lemma 3.3.6.

e YV =R?x (4, 3) denotes the geostrophic domain, where § € (0,1). This is equivalent to
assuming that the initial potential temperature of the fluid is bounded away from zero

and infinity.

e We always equip Z.()) with the W, Wasserstein metric, which is defined by Wy : Z.()) x
Z(Y) = [0,00),

Wi (a, 8) = inf{ /y Iy =3l.5) 0 € 20 x y>}, (3.5)

where m 47 = o and moxy = [ such that m; : Y x Y — Y is defined by m(y,¥y) =y and
o 1 Y X Y — Y is defined by m(y,y) =y.

3.2.2  The compressible SG equations

In this section we define weak solutions of (3.1).
Definition 3.2.1 (The cost function). The cost function ¢ : X x Y — R associated with the
compressible SG equations is given by

1 2 2
c(x,y) = — <—;°r (1 — 1) + —;‘” (w9 —12)? + 9333) : (3.9)
Y3

It is easy to check that c is twisted, namely that c is differentiable in x and that the map
y — Vxe(x,y) is injective for all x € X' [59, Definition 1.16].

Note that, while the term gz3 in (3.9) is physically motivated, it could be replaced by ¢(x)
for any function ¢ € C?(X) such that d,,¢ # 0 (so that c is twisted). In [24] the existence of
weak solutions of the compressible SG equations is proved in this more general setting, while
the assumptions on the initial data in [24], as well as the subsequent [23] and [32], are more

restrictive than ours.

Definition 3.2.2 (Optimal transport cost). The optimal transport cost from o € Z(X) to
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a € P(Y) for the cost function c is defined by

To(o,a) := T:i;’?iy ; c(x,T(x)) do(x). (3.10)

If 0 € P (X) and a € Z.()), then there exists a unique map 7' : X — Y achieving the
minimum in (3.10); see, for example, [59]. We call T' the optimal transport map from o to «

for the cost c.
Definition 3.2.3 (Geostrophic energy). We define the compressible geostrophic energy func-
tional E : Z(X) x Z.(Y) = RU {400} by

E(0.a) = Tolo,a) + F(o), (3.11)

where ' : Z(X) — RU {+oo} is defined by

k| ox)7dx if o € P (X),
. [ o € PulX)

400 otherwise,

where v € (1,2) and k > 0 are constants.

Lemma 3.2.4 (Existence and uniqueness of minimisers of ). Given o € Z.(Y), the functional

on P(X) defined by o — E(o,«) is strictly conver and has a unique minimiser o, € Pyc(X).

Proof. This is proved in [24, Theorem 4.1] for the special case o € Pye(X). The functional
P(X) 5 0+ T.(0,a) is continuous and convex [59, Propositions 7.4 & 7.17], and F is lower
semi-continuous and strictly convex [59, Proposition 7.7 & Section 7.2]. Therefore E is lower
semi-continuous and strictly convex. Since X is compact, Z(X) is compact with respect to
weak convergence of measures. Therefore E(-, @) has a minimiser o, which belongs to Z,.(X)
because E(-, ) takes the value +00 on Z(X)\ Pac(X). Since E is strictly convex, its minimiser

is unique. O
Definition 3.2.5 (Optimal source measure and transport map). Given o € Z.(})), we define

the map o, : Z.(Y) = Poc(X) by

o.la] = argmin E(o, a). (3.12)
0E€Pac(X)
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We denote by T, : X — Y the optimal transport map from o,[a] to « for the cost c.

The formulation of the compressible SG equations given in (3.1) and (3.4) is formal because
the inverse of T,, may not be well defined. For example, if a; is discrete, then T,, sends a
set of positive Lebesgue measure to each point in the support of a4, violating injectivity. We
therefore introduce a suitable weak formulation of (3.1).

To derive the weak formulation, we assume provisionally that T, ! exists and that all func-
tions appearing in (3.1) are sufficiently regular. Multiplying (3.1) by ¢ € C*(Y x R) and
integrating by parts over the domain Y x [0, 7] yields

/ ' / (Bien(y) + T (v — T2 (y)) - Veorly)) don(y)dt = / or(y) das (y) — / ooly) dao(y),
0 Yy y Yy

where we have used the notation ¢,(y) := ¢(y,t). By using the push-forward constraint
(Ta,)#0+[0n] = oy to rewrite the term involving 7., !, we arrive at the following weak formulation

of the compressible SG equations.

Definition 3.2.6 (Weak solution). We say that a € C([0, 7]; Z.(Y)) is a weak solution of the
compressible SG equation (3.1) with initial condition ag = @ € L. () if for all p € C°(Y xR),

/ ' / Brely) + (Jy) - Vieu(y)] dan(y) dt — / ' / (%) - Vipu (T (x)) do o] ()
0 y 0 X

= / pr(y) da-(y) — / poly) da(y). (3.13)
y

y

Remark 3.2.7 (Equivalent weak formulation). Following [6, 12], the nonlinear term in (3.13)

can be rewritten as a term that is linear in the optimal transport plan:

/ / (Jx) - Vo (T, (x)) dos[oy] (x) dt = / / (Jx) - Vu(y) dyloe) (x, y) dt, (3.14)
o Jx 0 Jaxy
where y[oy] = (Idy % T,,)z0.[] is the optimal plan for transporting o.[oy] to ;.

3.2.8 Semi-discrete optimal transport

In this section we summarise a key definition used throughout this chapter. Here N € N is any

natural number.
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N
We say that a discrete probability measure Z m'o, € PN(Y) is well-prepared if
i=1
z € D) where DY = {ze DV : i £ Vi,je{l,...,N},i#j}. (3.15)

In other words, a discrete measure is well-prepared if the seeds z* lie in distinct horizontal

planes.

Definition 3.2.8 (c-Laguerre tessellation). Given (w,z) € RY x DV the c-Laguerre tessella-

tion of X generated by (w,z) is the collection of Laguerre cells {Li(w,z)}Y, defined by
Liw,z) = {x€ X :c(x,2') —w' <c(x,2/) —w Vje{l,....N}}, ie{l,...,N}L

The c-Laguerre cells form a tessellation of X in the sense that |, Li(w,z) = X and

L£3(Li(w,z) N Li(w,z)) = 0if i # j (by [53, Proposition 37]). Intuitively, changing the weight
vector w = (w',...,w") shifts the boundaries of the Laguerre cells, thus controlling their
volumes. It is easy to check that if z € D}, then each Laguerre cell Li(w,z) is the intersection
of X with N — 1 paraboloids of the form

2

{x ER?: a3 < — 5; ((:U1 —ay)* + (zg — CL2)2) + b} )

where a;,as € R depend on z and b € R depends on (w,z). In Figure 3.2 we plot c-Laguerre

tessellations in two dimensions for the following 2D version of the cost (3.9):

1 c20r 2
caa((z1,23), (1, Y3)) = ” (7(% — )"+ 9»”03)‘ (3.16)

Characterisation of the optimal transport map

It is well known (e.g., [53, Section 4]) that the optimal transport map 7' : X — Y from an
absolutely continuous source measure o € P,.(X) to a discrete measure o™ € PN (Y) for the

cost ¢ is given by

N
T = Zzi]lLi(w,z)a (317)
i=1
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where w € RY satisfies
o(Li(w,z)) =m' Vie{l,...,N}. (3.18)

In other words, T is the piecewise constant function given by T'(x) = z' if x € Li(w,z). As a
consequence of the fact that ¢ is twisted and of [53, Proposition 37|, the intersection of any two
c-Laguerre cells has zero Lebesgue measure, and hence T is well-defined £3-almost everywhere.
In addition, by [53, Theorem 40], w satisfies (3.18) if and only if it maximises the dual transport

functional, namely, if and only if it satisfies

N
= max (m’fﬁ’ +/ (c(x,2") — 0") da(x)) = T.(0,a"), (3.19)
i=1 Li(w,z)
where the second equality follows from the well-known Kantorovich Duality Theorem.

3.3 The dual problem

In this section we derive a dual formulation of the minimisation problem (3.12) for the case
where « is a discrete measure. Additionally, we prove necessary and sufficient optimality
conditions that characterise the optimal source measure o,[a] in terms of the solution of the
dual problem. The main results are contained in Theorem 3.3.4.

Given (w,z) € RY x DV recall that the c-transform of w is the function we(-;z) : X — R
defined by

wi(x;z) = min_{c(x,z") —w'}.
In particular, w®(x;z) = ¢(x,z') — w' if and only if x € L' (w, z).

Definition 3.3.1 (Dual functional). Given m € AY | define the dual functional G : RY x DV —
R by

N

Gw.z) = imw - [ e ac= Y (m - [ RAGETCED ).

=1
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where f*: R — R is the Legendre-Fenchel transform of the function f : R — R given by

ksY if s >0,
f(s) =

+oo if s <0,

where v € (1,2) and k > 0.

Remark 3.3.2 (Properties of f). The function f is strictly convex on [0,00), lower semi-

continuous, and its Legendre-Fenchel transform is given by

f*(t) ==sup (st — f(s)) = %“7)177/757/ if t >0,

seR

o

if ¢ <0,

where 7' € (2, 00) satisfies %4— % = 1. Note that f* € C*(R).

Remark 3.3.3 (Derivation of the dual functional). We give a short derivation of the dual func-
tional before stating a rigorous duality theorem below (see Theorem 3.3.4). Here we identify
vectors w € RY with real-valued functions on the discrete set {z'}¥ | via w(z') = w'. Applying

the standard Kantorovich Duality Theorem from optimal transport theory gives

inf E(o,a") = inf (7;(0, o) + F(O’))

Ueyac(){) aeWaC(X)
= inf (sup (/w da+/wd04)+F( ))
0€Pac(X) \weRN
> sup inf (/ wcda—i—/wda + F( ))
weRNO’E/aC

= sup (/wdaN— sup (/(—wc)da—F(O)))
weRN A% 0E Pac(X) X

J/

-~

—F*(~we)

N . .
= s (v [ ax)

= Sup g(’U),Z).
weRN

In Theorem 3.3.4 we prove that the inf on the left-hand side is in fact a min, the sup on the

right-hand side is in fact a max, and the inequality is an equality.
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Theorem 3.3.4 (Duality Theorem). Let z € DY, m € AY and define

N
aV = g m'oyi.
i=1

Assume that 2% # Z§ foralli,j € {1,...,N} withi # j. Then the map o — E(o,a™) is strictly
conver and has a unique minimiser, and the map w — G(w,z) is concave and has a unique
maximiser. Moreover,

in Eo,dV)= . 3.20
,min (0,07) = max G(w, z) (3.20)

Furthermore, 0 € P,.(X) minimises E(-,a™) and w € RY mazimises G(-,z) if and only if

i — / (FY (0 — e(x,2))dx Vie{l,... N}, (3.21)
Li(w,z)
o(x) = (f*)(—w(x;2)) for L3-almost every x € X. (3.22)

Theorem 3.3.4 is analogous to the duality result given in [60, Proposition 12| but with the
cost ¢ rather than the quadratic cost. Other closely related results include [51, Proposition 5.3]
and [9, Theorems 3.1 and 3.2]. In addition, the Euler-Lagrange equation (3.22) can be derived
from [59, Proposition 7.20].

Remark 3.3.5 (Optimal transport map). If 0 € Z,.(X) minimises E(-, ") and w € RY max-
imises G(-,z), then the optimality conditions (3.21) and (3.22) imply that the mass constraint
(3.18) holds. In particular, this means that the map 7" given by (3.17) is the optimal transport

map from o to ¥ for the cost c.

We begin by establishing the regularity of G; see Proposition 3.3.8. To do this we use the
following two lemmas, which will also be used in Section 3.4 to prove that the centroid map is

continuously differentiable.

Lemma 3.3.6 (Regularity of integrals over Laguerre cells). Let U C RN x DY be the open set
U= {(w,z) ceRY x DY : L3(Li(w,z)) >0Vic {1,...,]\7}}.
Define ¥ = (U ... ON): U — RY by

V' (w, z) ::/ ((x,w,z)dx,
Li(w,z)
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where ¢ : X x RY x DY — R satisfies the following:
e ((-,w,z) € C(X) for all (w,z) € RN x DV;

e for each compact set K C RN x DV, ((x,-,-) € COYK) for all x € X and there exists a
constant L(K) > 0 such that supyecy Lip({(x, -, -)|x) < L(K);

o for each (wq,z9) € RY x DY, there exists an open set S(wg,zo) € X with £3(X \
S(wo,2zo)) = 0 such that the partial derivatives ¢ /0w(x,-,-), 0C/0z(x, -, -) exist and are

continuous at (wo,zg) for all x € S(wo, zg).

Then W is continuously differentiable. Moreover, for alli,j € {1,...,N}, i # 7,

((x,w,z)

ot / ¢ / 9
w,z X, w,z)dx — A — dH"(x),
owi ( )= Li(w,z) ow? Bui ) Li(w,z)NLL(w,z) |Vxe(x,2t) — Vie(x,27)| )
o’ / ¢ / Vye(x,27) ((x,w,2) )
- (w,z) = X, w,z)dx + , — dH"(x),
0z ( ) Li(w,z) 0z 92 ) Li(w,z)NLL (w,2) [Vxe(x,2") — Vixe(x, 27) || )
and
v / ¢ / ((x,w,z) 2
-(w,z) = X, w,z)dx + . — dH*(x),
awl( ) Li(w,z) ow* du ) Z Li(w,z)N L (w,2) [Vxe(x,2") — Vie(x,27)|| &)

JFi

O e ) ()
azi(w’z)_/Llwz)az d Z/ o(x,20)]| dH(x).

i (w,z)NL (w,2) ||VXC(X Z)
Proof. The proof is rather technical and is given in § 3.7.2. [

Note that the set U in the statement of Lemma 3.3.6 is open because the map (w,z) —
L3(Li(w,z)) is continuous; cf. [53, Proposition 38(vii)]. The constraint that the seeds in U
satisfy |24 — z§| > () is not necessary, but it is sufficient for our purposes and it slightly simplifies

the proof.

Lemma 3.3.7. Define ( : X x RV x DY =R by

C(X’ w, Z) = (f*)/(_wc(x; Z))

Then ¢ satisfies the assumptions of Lemma 3.3.6.
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Proof. Since (f*)" is non-decreasing, we have that

g(x,w,z):(f*)'(— min (c(x,zi)—wi)): max  (f*) (w — e(x,2%)).

ie{1,...,.N} ie{1,...,.N}

For each i € {1,..., N}, define ¢ : X x RY x DY — R by

C(x,w,z) = (f) (w' — c(x,2")). (3.23)

Then ¢’ is continuously differentiable because (f*)’ and c¢ are continuously differentiable.

Fix (w,z) € RY x DV and consider the function ¢(-, w,z) = max; *(-,w,z). For each
i € {1,...,N} the function (*(-,w,z) is globally Lipschitz on X because ¢’ is continuously
differentiable and X is compact. Therefore ((-,w,z) is the pointwise maximum of a finite
family of Lipschitz functions, hence Lipschitz. In particular, it is continuous.

Now we consider the functions ((x,-,:) = max;((x,-,) indexed by x € X. Let K C
RN x DV be compact. As above, ((x,,)|x is the pointwise maximum of a finite family of
of Lipschitz functions, hence Lipschitz. Moreover, the Lipschitz constant of (?(x,-,)|x can be
bounded from above by a constant L*(K') independent of x since 9¢* /0w, 9" /0z are continuous,
and X and K are compact. Therefore sup,.y Lip({(x,-,")|x) < max; L'(K) =: L(K), as
required.

Let (wo,zo) € RY x DY and define S(wy,zo) = Ujvzl int(LJ(wy,zg)). Since the cost ¢ is
twisted, £3(X \ S(wq,2zo)) = 0 by [53, Proposition 37]. For all x € S(wq,z¢), we have

2w, 20) = ()t~ clxzp) i € (L 20).
v \0 if x € int(LI(wy,z0)) for j # 1,
r ' | | |
% o zg) = | 7RI (wh = e zh)ix € int(L (wo, 20))
0Zl \O if x € int(LI (wog, zg)) for j # i.

(Note that the partial derivatives do not exist if x € L' (wq,zo) N LI (wy,2) for j # i.) In
particular, for all x € S(wo,zg), the partial derivatives 90¢/0w(x,-,-), 0(/0z(x,-,-) exist at

(wo, z9). Now we prove that the partial derivatives are continuous. Let x € S(wy,2). Then
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there exists i € {1,..., N} such that x € int(L(wy, 2g)), so
c(x,2p) —wy < e(x,79) —wg Vje{l,...,N}\{i},

Since the inequality is strict and ¢ is continuous, x € int(Li(w,z)) for all (w,z) sufficiently

close to (wo, zo), and

%(X,W,Z) - ﬁ(xa 'LU(),Z()) =

ow'

(f*)"(w' = c(x,2")) = (f*)"(w — e(x,2p))  if x € int(Li(wo, 20)),

0 if x € int(LI(wy,z9)) for j # i.
Since (f*)” and ¢ are continuous, it follows that 9(/0w(x, -, -) is continuous at (wq, zp). Simi-

larly, it can be shown that d¢/0z(x, -, -) is continuous at (wy, zg). This completes the proof. [

Proposition 3.3.8 (Regularity of G). Let z € DV and w € RY. Then G(-,z) € C*(RY),
G(w,-) € CHDY), and

ag _ mi o *\/ wi —c 3

ure ) == [y ) ax (3:24)
ag T *\/ ()1 3

%(w,z) = /Lg(w,z) Vye(x,z") (f*) (w' — c(x,2')) dx, (3.25)

for alli € {1,...,N}. Moreover, if z € DV satisfies 2 # zé foralli,j e {1,...,N}, i # j,
and w € RY satisfies L3(Li(w,z)) > 0 for all i € {1,...,N}, then G is twice continuously

differentiable at (w,z), and the second-order partial derivatives of G with respect to w are

(_9°g / (/") (' = e(x,27)) ) o
——(w,z) = : — dH*(x) for i,
dwgus ") LitwzmnLiwz) | Vxe(X,2°) — Vxe(x, 29)|| (o) forj#
2 ) (3.26)
a g _ *\// i ) . a g
G = [ U o) ax > G 9
If in addition
/ (f) (W' = c(x,2")) dx > 0 (3.27)
Li(w,z)

for alli € {1,...,N}, then the Hessian matriz D2, G(w,z) is negative definite.
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Proof. Fix zg € DV. We begin by showing that G(-,z¢) € C'(RY). Let wy € RY and, as in the
proof of Lemma 3.3.7, define the set

S(wo, zo) int(L? (wo, z9)).

Cz

Jj=1

For any x € S(wo, z¢) there exists i € {1,..., N} and € > 0 such that, for all w € B.(wy),
c(x,28) —w' < c(x,z)) —w' Vje{l,... N}
In particular, x € L. (w, zg) for all w € B.(wy), i.e.,
—w'(x;z) = w' — c(x,z)) Yw € B.(wy).

It follows that

, V(wh — c(x,2)) if j =1,
Vx € int(Li(wo, 7)), — f*(—wi(x:2)) _ QU = el ) i g (3.28)
8wﬂ w=wo .
0 otherwise.
By continuity of (f*)’,
lim (f*) (w’ — c(x,zé))]ng(mzo)(X) = () (w) — e(x, z%))]lLJc'(wO’zo)(x) (3.29)

w—wo

forall j € {1,...,N}.

As in the proof of Lemma 3.3.7, the map w — f*(—w*(x;z)) is locally Lipschitz continuous
for all x € X, and its Lipschitz constant can be bounded uniformly, independently of x € X.
Moreover, for all x € S(wy,2¢) this map is differentiable at w, with derivative given by
(3.28). Then, since X is compact and X \ S(wy, zg) is Lebesgue negligible, by the Dominated

Convergence Theorem

%( wo, Zo) <ZWW—/f )X>
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=m’ — /Lf(wo ZO)(f*)’(wg —¢(x,2))) dx.

This establishes (3.24). Similarly, using (3.29) and applying the Dominated Convergence The-
orem proves continuity of the partial derivatives of G(-,zg) at wy. Since w, was arbitrary,
it follows that G(-,z¢) € C'(RY). Analogously, it can be proved that (3.25) holds and that
G(wy,-) € CHDN) for all wy € RY; we omit the proof for brevity.

Now suppose that z € DV satisfies 2 # 2] for all 4,5 € {1,...,N}, i # j, and w € RV
satisfies £3(Li(w,z)) > 0 for all i € {1,...,N}. By Lemmas 3.3.6 and 3.3.7, and equations
(3.24) and (3.25), G is twice continuously differentiable in a neighbourhood of (w,z) and its
second-order partial derivatives with respect to w are given by (3.26).

In addition, suppose that the positivity constraint (3.27) holds. Then

/Li( )(f*)"(wi —c(x,2z"))dx >0

for all i € {1,..., N}. Using this inequality and the non-negativity of (f*)" and (f*)” gives

—82 *\// 7 7
‘awlaw’ 7 ‘ Z‘(?wzawﬂ W ‘_/Lg(w,z)(f) (0" — c(x,2")) dx > 0.

Altogether, the Hessian D2, G(w,z) is strictly diagonally dominant, symmetric, and has neg-

ative diagonal entries, which implies that it is negative definite, as claimed. O
Now we prove the duality theorem, Theorem 3.3.4.

Proof of Theorem 3.5.4. By Lemma 3.2.4, E(-, o) is strictly convex and has a unique min-
imiser over Z,.(X).

Now we show that the maximum of G(-,z) over RY is attained. Since G(-,2) is continuous,
it suffices to show that limjj,|—c G(w,z) = —00. Since & is compact and c is continuous, there
exists a constant M (z) > 0 such that

max max |c(x,z’)| < M(z).
je{l,..,N} xeX

Pewem) = £ (o (/= clx2) ) = (maxw - 3@)).

J
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For each w € RY, write w = w, — w_, where w,,w_ are the positive and negative parts of

w, namely, w’, = max{w’,0}, w’. = —min{w",0} for all s € {1,..., N}. Since ZZ]L mt =1,

Gw) < > m'(u, —ut )~ L) (o~ 21(a))

i=1

< [[ws oo — minm’ w_|lo — £3(X)f (maxw _ M(z))
7 J

) ) if wy = 07
= —minm’ [|[w_|« +

lwilloo = LX) * ([we |l — M(2)) if w #0.

The first term tends to —oo as [[w_|| — 00, and the second term tends to —oo as ||w, || — 00
because f* grows superlinearly at +o0o. Therefore lim |- G(w,z) = —00, as claimed.

Next we show that G(+,z) is concave. Since f* is non-decreasing,

.....

G(w,z) me —/f “(x;2) dx—me —/ glaXN}f w — c(x,2’)) dx.
je

Note that the map w — maxjeq,. ny f*(w — ¢(x,27)) is convex because f* is convex and

the pointwise maximum over a family of convex functions is convex. Therefore it follows by
linearity of integration that G(-,z) is concave.

Now we prove that the maximiser of G(-,z) is unique. Let w be a maximiser of G(-,z). By
Lemma 3.3.8 the Hessian of G(,z) at w is negative definite, so w is an isolated maximiser.
Since G(-,z) is concave, its set of maximisers must be convex, hence connected. Therefore, w

is the unique maximiser of G(-,z).

Next we prove weak duality. Recall the Fenchel-Young inequality:
ab < f(a) + f*(b) VYa,beR, (3.30)
ab= f(a) + f*(b) <= a€df*(b)={(f)()} <= bedf(a). (3.31)

By the Kantorovich Duality Theorem (see (3.19)) and the Fenchel-Young inequality (3.30), for
all 0 € 2,.(X), w e RY,

E(o,a™) = T.(o,a™) + /Xf(a(x))dx
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= max (iilm%i+/xﬂ)c(x;z)a(x) dx> +/Xf(0(x)>dx

>3 it + [ (wxa)o(x) + flo(x) dx

N
> Zmiwi - / ff(—wi(x;2)) dx = G(w, z). (3.32)

i=1 i

In particular, we have the weak duality

min  E(o,a”) > max G(w,z). (3.33)
Ueyac(X) TDGRN

It follows that if E(0,a) = G(w,z), then w is a maximiser of G(-,z) and o is a minimiser of
E(-,a™).

Now we prove that there exists a pair (0, w) € Poo(X) x RY satisfying (3.21) and (3.22).
Let w € RY be the unique maximiser of G(-,z). Then V,,G(w,z) = 0 and hence, by (3.24), w
satisfies (3.21). Define o : X — R by

Since 3N m’ = 1 and (3.21) holds, it follows that o is a probability measure. Therefore the
pair (o, w) € P..(X) x RY satisfies (3.21) and (3.22), as claimed.

Finally, we prove strong duality and that (3.21) and (3.22) are necessary and sufficient for
optimality. Let (0, w) € P,.(X) x RY satisfy (3.21) and (3.22). Then

/ o(x)dx=m' Vie{l,...,N}L
Li(w,z)

N

Therefore w is an optimal Kantorovich potential for transporting ¢ to o™, and

Te(o, ™) = /ch(x; z) do(x) + Zmiwi. (3.34)

=1

By (3.22),
o(x) = (F) (—wi(xi2)) € If* (—w'(x;7)) VxeX.
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Then by the Fenchel-Young inequality (3.31),
—w'(x;z) 0(x) = f(o(x)) + f*(—w(x;2)) VxeiX. (3.35)

Combining (3.34) and (3.35) gives
N
E(o,o) = Zmiwi — / ff(—w(x;2)) dx = G(w, z).
i=1 X

Therefore, by (3.33), w is a maximiser of G(-,z), o is a minimiser of F(-,o"), and strong
duality holds, (3.20).

Conversely, let ¢ € Z,.(X) minimise F(-,a") and w € RY maximise G(-,z). We will show
that (3.21) and (3.22) hold. Since G(-,z) is continuously differentiable and w is its maximiser,
Vw G(w,z) = 0. Therefore w satisfies (3.21) by (3.24). By strong duality, (3.20), the inequality

in (3.32) is in fact an equality with this choice of o and w. In particular,
we(x;z) o(x) + f(0(x)) = —f*(—w(x;2z)) for L*-almost every x € X
Hence, by the Fenchel-Young inequality (3.31), for £3-almost every x € X,

o(x) € 0f " (—w'(x;2)) = { (/") (—w(x;2)) }.

This proves (3.22) and completes the proof. ]
An immediate consequence of Theorem 3.3.4 and Lemma 3.3.7 is the following.

Corollary 3.3.9 (Regularity of the optimal source measure for discrete target measures). Let
aN € PN(Y) be a discrete measure and o,[aN] € P,.(X) be the optimal source measure given

in Definition 3.2.5. Then o.[aN] is Lipschitz continuous.

3.4 Discrete solutions of the compressible SG equations

The goal of this section is to prove Theorem 3.1.1, namely, that for well-prepared initial data,
discrete solutions of the compressible semi-geostrophic equations exist, are unique, and are
energy conserving.

We first define the centroid map C that appears in the ODE (3.6) and show that it is
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continuously differentiable.

Definition 3.4.1 (Optimal weight map). Given m € A", define the map w, : DY — RY by

w,(z) == argmax G(w, z). (3.36)

weRN
Note that w, is well defined by Theorem 3.3.4.

Definition 3.4.2 (Centroid map). Given m € A, define the centroid map C : D — (R3)N
by C(z) = (C(z),...,C"Y(z)), where

- 1
Ci(z) = - / x do[a™](x), (3.37)
Li(wx(z),2)

mZ
where
N
aV = E m'yi.
i=1

That is, C'(z) is the centroid (or barycentre) of the set of points Ty ({z'}) transported to z’

in the optimal transport from o,[a"] to oY for the cost c.

To prove the existence of solutions of the ODE (3.6), we show that the transport velocity
W : D} — R3N is continuously differentiable, where W is defined by

W(z) = J"(z — C(2)),

where J¥ is the block diagonal matrix JV := diag(J,...,J) € R3V*3N,
Lemma 3.4.3 (Regularity of w,). The optimal weight map w, is continuously differentiable.

Proof. By definition of w,, V4G (w,.(z),z) = 0 for all z € DV. In order to show that w,
is continuously differentiable, we will apply the Implicit Function Theorem to the function
Vw@. Fix any point zg € Dév and define wy = w,(zg). By Proposition 3.3.8 and equation
(3.21), G is twice continuously differentiable in a neighbourhood of (wy, z¢) and D2 G(wy, 7o)
is negative definite, hence invertible. By the Implicit Function Theorem, there exists an open
set U C DY containing z and a unique, continuously differentiable function w : U — R” such
that w(z¢) = wo and V,,G(w(z),z) = 0 for all z € U. By uniqueness, w coincides with w, on

U. Therefore w, is continuously differentiable in a neighbourhood of zy, as required. O
Lemma 3.4.4 (Regularity of C). The centroid map C is continuously differentiable.
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Proof. Recalling the expression for o,[a”"] derived in Theorem 3.3.4, we have

C'(z) = — x (f) (—(w.(2))"(x; 2)) dx.

M J Li(w.(2),2)

Define ¥ = (U, ... UN): RV x DY — (RN by

Viwz) = — [ x(f)(~w(xz)dx

3 .
m"J Li(w,z)

Then C = ¥ o (w.,Id). For j € {1,2,3}, define the functions ¢; : X x RY x D¥ — R by
C(x,w,z) = z; (f*) (—w(x;2)). It follows from Lemma 3.3.7 that (; satisfy the assumptions of
Lemma 3.3.6, so ¥ is continuously differentiable by Lemma 3.3.6. Therefore C is continuously

differentiable by Lemma 3.4.3 and the Chain Rule. n

We now show that solutions of the ODE (3.6) correspond to weak solutions of the PDE
(3.1) with discrete initial data.

Proposition 3.4.5 (cf. [8, Lemma 4.2]). Letz € DY and leta™ € 2N (Y) be the corresponding

discrete initial measure given by

N
= m's,. (3.38)
i=1
Fiz a final time 7 > 0 and let z € C'([0,7]; YV). Define oV : [0, 7] = 2N () by
N
af = m'oue Vte(o,7]. (3.39)
Then o is a weak solution of the compressible semi-geostrophic equations (in the sense of

Definition 3.2.6) with initial data o =@ if and only if z is a solution of the ODE (3.6) with
initial data z(0) = Z.

Proof. Suppose that z € C'([0,7]; YY) is a solution of the ODE (3.6) and let oY be given by
(3.39). We show that oV satisfies (3.13). For all ¢ € C>*(Y x R),

| [ e+ 0w Ve aafmiar [ [ () DT 0y an o100t
—Zm | etz ®) + 2(0) - Vetao)] ar
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/ / oy 0 V(@ ) do a0 d

= /y er(y)da; (y) — /y voly) da™ (y),

as required. From here, the proof follows exactly the proof of Lemma 4.2 given in [8]. n

Next we prove global existence and uniqueness of solutions of the ODE (3.6) using the

following a priori estimates.

Lemma 3.4.6 (A priori estimates). Let z : [0,7] — DV be continuously differentiable and
satisfy the ODE (3.6) on the interval [0,7]. Let R = R(X) > 0 satisfy X C Bgr(0). Then, for
eachi € {1,...,N} and t € [0, 7],

Iz ()] < (|12 (0)]| + feor R, (3.40)
12' ()] < feor (12'0)]| + R(feor™ + 1)) - (3.41)

Proof. By (3.6), and since J is skew-symmetric with || /|2 = feor,

d 2 - 20T Ca(t)

Fl0l = i S < ferlCat)] < fok

Integrating gives (3.40). By (3.6) and (3.40),

12" @)l = [17(2'(t) = C' (2| < feor (12O + IC (ZED) < feor (12 (O)] + fear BT + R) ,
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as required. O

Proposition 3.4.7 (Existence and uniqueness of solutions of the ODE (3.6)). Let the final time
7 € (0,00) be arbitrary and let the initial data z € D). Then there exists a unique function

z € C*([0,7]; DY) such that z satisfies the ODE (3.6) on the interval [0,7] and z(0) = Z.

Proof. The proof of Proposition 3.4.7 follows exactly the proof of Proposition 4.4 of [8]. Indeed,
local existence and uniqueness follows from the Picard—Lindel6f Theorem, Lemma 3.4.4, and
the assumption on the initial data z. Global existence then follows from the a prior: estimates
(Lemma 3.4.6) and the fact that the third row of the matrix .J is zero, which implies that any
solution z of the ODE satisfies z4(t) = 2%(0) for all ¢ and . In particular, for all ¢, z(¢) belongs

to the subset D) of DY where the centroid map C is continuously differentiable. O
Furthermore, we prove that the discrete solutions conserve energy.
Proposition 3.4.8 (Solutions are energy-conserving). Any solution z € C*([0,7]; DY) of the

ODE (3.6) is energy-conserving in the sense that

CB(ofoM], o) =0 Vie[,7]

where
N
Oéiv = Zmzézi(t).
i=1
Proof. By the duality theorem (Theorem 3.3.4),

d N Ny d
- B(oufo], oY) = 2 G(w.(a(1)), (1))

N oG .
= S w.(a(t). 2(1) - 2 () (3.42)
because w,(z(t)) is the maximiser (and hence a critical point) of G(-,z(t)). For brevity, define

Le(t) = Le(w.(a(t)), 2(t)),
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and let C¥(t) = C'(z(t)). By (3.22) and (3.25),
050 50)- 0 = ([ T O) o) 40

cor(21 (1) = 21)

1 2 (2i(8) — o) | o[ ](x)dx | - 2
- (1) /Li(t) cor (% (t) o) | ouled’](x) d (t)

—c(x,2'(t))

_ m% cor (41 _ i) - J(z' — Ci(t)) = 0 (3.43)

z3(t)

where the final two equalities hold by (3.6), skew-symmetry of J, and the fact that the third

row of J is zero. Combining (3.42) and (3.43) completes the proof. O
Finally, we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let @ = SN mis,: € PN(Y) be well-prepared in the sense of
(3.15). By Proposition 3.4.7 the ODE (3.6) has a unique solution z € C?([0, 7]; D{Y) satisfying
z(0) = z. Define o : [0,7] = 2V (V) by ¥ = Zf\il m*d,i(). By Proposition 3.4.5 oV is weak

=N

solution of the compressible SG equations (in the sense of Definition 3.2.6) with off = a@¥.

Furthermore, o is energy-conserving by Proposition 3.4.8. [

3.5 Existence of weak solutions

In this section we prove Theorem 3.1.2. The strategy is to approximate the initial measure
a € Z.(Y) by a sequence of discrete measures a” € 2V (), apply Theorem 3.1.1 to obtain
a weak solution of (3.1) for each initial data @, and then pass to the limit N — oo to
obtain a weak solution of (3.1) with initial data @. This is the same proof strategy as for the
incompressible system given in [8]. Indeed, some of the preliminary lemmas, namely Lemmas
3.5.1 and 3.5.2, are identical and are stated here without proof. The first lemma asserts that any
probability measure u € Z.()) can be approximated in the W) metric by a discrete measure

puN € 2N (Y) with seeds in distinct horizontal planes.

Lemma 3.5.1 (Quantization, [8, Lemma 5.1)). Let p € P.(Y). There exists a compact set

K C Y and a sequence of well-prepared discrete probability measures u~ € 2N (Y) (in the

90



Chapter 3: Compressible Analysis

sense of (3.15)) such that
spt(u’¥) C K VN €N, lim Wi (e, 1) = 0.
— 00

Lemma 3.5.2 (Compactness, [8, Lemma 5.2]). Let @ € 2.(Y) and let &~ € 2N(Y) given by
Lemma 3.5.1 be a sequence of well-prepared discrete discrete probability measures converging to

ainWy. Fixt € (0,00). Let oV € CO([0,7]; 2N (Y)) given by Theorem 5.1.1 be a discrete
weak solution of (3.1) with initial data &@~. Then the sequence (o¥)nen has a uniformly
convergent subsequence in C([0,7]; Z.(Y)). To be precise, there exists a subsequence (which we

do not relabel) and a Lipschitz map o € C1 ([0, 7]; Z.(Y)) such that

lim sup Wi(ey', az) = 0. (3.44)
N—=00 y4e0,7]
Moreover, there exists a compact set K C Y such that spt(aly) C K and spt(oy) C K for all
t€|0,7] and N € N.

The final task is to show that « in Lemma 3.5.2 satisfies the PDE (3.1). One of the

ingredients of the proof is the following.

Lemma 3.5.3 (Uniform convergence of source measures). Given a compact set K C Y and
a sequence B € PN(Y) N P(K) converging weakly to B € P(K), the sequence of optimal
source measures o,[3"] converges uniformly to o.[3].
Proof. Recall from Corollary 3.3.9 that o,[3"] is Lipschitz continuous for all N € N. Moreover,
it follows from the proof of Lemma 3.3.7 that its W1*°-norm can be bounded independently of
N (by noting that max,e pynpn [|CF(-, w.(2), 2)||c1 () is independent of N, where ¢* was defined
in equation (3.23)). Therefore the sequence o,[3"] is uniformly bounded and equicontinuous.
By the Ascoli-Arzeld Theorem, there exists & € C(X) N Z,.(X) such that o,[3"] converges
uniformly in X to & (up to a subsequence that we do not relabel).

Next we show that ¢ = o,[3]. The continuity of 7. (see [59, Theorem 1.51]) and the uniform

convergence of o, [3"] imply that
E(0.[p"],8Y) = E(5,8) and E(0.[8],8") = E(0.[8],8) as N — oo.

Assume for a contradiction that E(7, 3) > F(0.[3], 3). Then E(o.[3"], ") > E(o.[3], V) for
N sufficiently large, which contradicts the fact that ¢,[3"] is the global minimiser of E(-, 3V).
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Hence E(o, () = E(0.[f], ) and so ¢ = o.[5] by the uniqueness of the minimiser of E(-, ).
Finally, note that all convergent subsequences of o,[3"] converge to o.[S], hence the whole

sequence must converge. O

For the proof of Theorem 3.1.2, weak convergence of o,[a] is in fact sufficient. However,

uniform convergence of o,[a}], along with the fact that o.[«}"] is Lipschitz continuous uniformly

in oV (see Lemma 3.3.7), implies the following.

Corollary 3.5.4 (Regularity of the optimal source measure for general target measures). Let
B € P(Y) and o.f] € Pa(X) be the optimal source measure. Then o] is Lipschitz

continuous.

Proof. This is an immediate consequence of Corollary 3.3.9 and Lemmas 3.3.7, 3.5.1 and 3.5.3.
O

Finally we prove our main theorem.

Proof of Theorem 5.1.2. Let a € C%*([0, 7]; Z2.())) be the limit of the sequence (a’¥)yen ob-
tained in Lemma 3.5.2, and let K C ) be a compact set such that spt(a¥) C K and spt(ay) C K
for all ¢ € [0,7] and N € N. By (3.13) and (3.14), for all ¢ € C2°(Y x R),

/ / Oupi(y) + (Jy) - Ve (y)] deg¥ (y) dt — / /m (Jx) - Veou(y) dyle'](x,y) dt

~ [ e dad )~ [ ly)da¥y). (315)
y Yy

A standard estimate in optimal transport theory (see [59, Exercise 38| or [63, Theorem 1.14])

gives

Or /y [Orp(y) + (Jy) - Vu(y)] d(oziv — Oét) (y) dt‘

< [ ma {19 011(3) + (73) - Vil Wiad, )t

< Ttren[gzx {IVy[0roc(y) + (Jy) - Vo) Wi, ar)} =0 as N — oo (3.46)
yeK
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by uniform convergence of o (seee (3.44)). Pointwise-in-time convergence of o implies that

lim | ¢-(y) d(e7 —ar)(y) =0 and lim [ @(y) d(@" —a@)(y) =0.
y y

N—oo

By Lemma 3.5.3, for all ¢t € [0,7], o.[a)] — o.[ay] in 2(X). Also, o) — o, in Z(K).
Therefore y[a)N] — v[ay] in Z(X x K), where y[ay] is the unique optimal transport plan for
transporting o.[ay] to ay; see [64, Theorem 5.20] . Define F, Fy € L'([0,7]) by

F(t) = /X U0 Vedy) e y). Falt) = /X 9T arlad]xy)

Then limy_,o Fy(t) = F(t) for all t € [0, 7] and

F %) T < cor V %S} .
Pl 0y < Foor e ] mace [Vl

By the Lebesgue Dominated Convergence Theorem,

im [ ] U Fauly) dofa i y) dt = I ) Vely) drfadicy) di. (347

N—o0
Combining equations (3.45)—(3.47) shows that « is a weak solution of (3.1), as required. [

Remark 3.5.5 (Convergence of the transport maps). It can be shown that T,y — Ty, as N — 00
in L? for p € (1, 00). This can be combined with the uniform convergence of the source measures

to pass to the limit in the nonlinear term
| [ ) VT ) dofal i a
0o Jx
to give an alternative, though more involved, proof of Theorem 3.1.2.

3.6 Explicit examples

In this section we present two explicit solutions of (3.1): a steady state solution and a discrete

solution with a single seed.

3.6.1 Steady state example

In this section we make the additional assumption that the fluid domain satisfies X C ).
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Here, the geostrophic space Y = R? x (4, 1/6) represents the set of all mathematically valid
coordinates for the model, where the vertical coordinate x5 is bounded away from zero and
infinity for some small 6 € (0,1). The domain X is the support of the fluid’s mass distribution
within this coordinate system. The assumption X C ) is therefore a statement of physical
consistency: the region actually occupied by the fluid must be a subset of the space of valid
coordinates.

Furthermore, in a steady state, the system is by definition stationary, implying the optimal
transport map is the identity (7; = Id). From the definition of the geostrophic velocity in terms
of T}, this immediately forces the velocity to be zero, a state which is trivially bounded. The
uniqueness of this steady-state solution is not a general property of the time-dependent PDE,
but rather a direct consequence of these highly restrictive steady-state conditions. As shown in
Remark 3.6.2, the requirement that 7; = Id forces any solution into a specific functional form.
Within this highly constrained family, the general mass conservation requirement becomes
powerful enough to uniquely determine the single parameter ¢,. Thus, the uniqueness arises
from the combination of the restrictive steady-state conditions reducing the problem to a single

degree of freedom, which is then fixed by the mass constraint.

Proposition 3.6.1 (Time-independent solution). Given ¢ € R, define oy : X — R by

oo(x) ;== (") (¢ — glnxs).

Then there exists £, € R such that

/XUE* (x)dx = 1.

Define a: [0, 7] = Z.(Y) by
=0, L3LX Vtel0,1]

Then « is a weak steady state solution of the compressible SG equation (3.1).

Remark 3.6.2 (Formal derivation). We give a formal derivation of the steady state « before
giving a rigorous proof of Proposition 3.6.1. By Definition 3.2.6, we take a weak solution
a € C([0,7]; Z:(Y)) of (3.1) and define it as a steady state if it is independent of time, is its

own energy-minimising source measure (i.e. oy = o[y, in particular, spt(a;) C X'), and has
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the identity as its optimal transport map 7,, = Id. Then

a = argmin E(o, o)
Ueyac(){)

for all t € [0,7]. It follows from [59, Proposition 7.20] that a; satisfies the Euler-Lagrange

equations
oE
%(at, ay) = ¢ on the support of o,
oE
%(at, ay) > ¢ otherwise,
for some ¢ € R, where 0E/dc denotes the first variation of E with respect to 0. Formally we
expect
oE
6—(at, ar) = o+ (),
o

where ¢ : X — R is an optimal c-concave Kantorovich potential for transporting a; to itself

with cost ¢; see [59, Section 7.2]. Then

v+ f'(a) = ¢ on the support of oy,

o+ f'(ay) > € otherwise.

If T,,, = 1d is the optimal transport map from o to itself , then Vip(x) = Vyc(x, x) for almost
all x in the support of ay [59, Proposition 1.15]. Integrating this expression gives ¢(x) = gInxs,

up to a constant. Then solving the Euler-Lagrange equations yields

an(x) = (f) 70 = p(x)) = (/) (¢ — gInay)

for all x in the support of a;. This is the steady state given in Proposition 3.6.1. The constant

(¢ is determined by the constraint that o, is a probability measure.

Proof of Proposition 3.6.1. First we show that there exists ¢, € R such that fX o, (x)dx = 1.
Since X C Y = R? x (4,1/6) and (f*)’ is non-decreasing, then for ¢ € R

(f)( = glnzs) > (f7)'(€ = gIn(1/0))
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for all x € X. Therefore
/ oo(x)dx > (FY(0 = gIn(1/6))|X] = 00 as £ — oo.
X
Let {5 = glnd. Since x5 > ¢ for all x € X,

/X%(X) dx = /X(f*)/(ffa —glnas)dx < /X(f*)’(&s —gné)dx = (f)'(0)[X] = 0.

The map £ — [, o¢(x)dx is continuous. Therefore, by the Intermediate Value Theorem, there

exists ¢, € R such that

/ Oy, (X) dx = 17
X

as claimed. For the remainer of this proof, we take ¢ =/,

Next we show that the identity map is the optimal transport map for transporting any
measure o € Z(X) to itself, and that an optimal Kantorovich potential pair is (¢, ¢°), where
¢ : X — Ris given by p(x) = glnxs, and ¢°: Y — R is given by

p*(y) = min (c(x,y) — ¢(x)) = min (c(x,y) — glnws).

First we compute an explicit expression for ¢°(y) for the special case y € X NY = X. Given

y € X, define 0, : X — R by 6y (x) = ¢(x,y) — glnxs. Then

2 2
S =) foe 000
2 2
Voy(x) = | L2(ay— o) [, Dy(x)=| 0 Le
4 g 0 0 %
Y3 3 T3

Therefore D?60,(x) is positive definite for all x € X. Hence 6y is strictly convex, its minimiser
is y, and its minimum value is

©(y) = g{rg;g@y(X) =0,(y) =cly,y) —glnys =g — glnys.

Note that ¢(x) + ¢°(x) = g for all x € X and that o is supported on X C ). Then

Ti(0,0) < /

X

c(x.x) o) =g = |

pdo + / pdo < T.(o,0),
X Yy
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which proves that the identity map is optimal for transporting o € Z(X) to itself, and that
(i, ¢°) is an optimal Kantorovich potential pair, as claimed.

Lastly, we show that o, = argmin,c, (x) E(0,00). If x € X satisfies oy(x) = 0, then
(f*)(¢ — glnzs) = 0 because oy(x) = (f*) (¢ — glnxz). By the definition of f* (see Re-
mark 3.3.2), then

0>/0—glnazy =1— p(x).

Therefore, since oy(x) = 0 in this case, we have f’(o,(x)) = f'(0) which is zero by the definition
of f. It follows that
p(x) + f'oe(x) = p(x) 2 .

On the other hand, if x € X satisfies oy(x) > 0, then
p(x) + [(oe(x)) = glnas + f'((f) (€ —glnws)) = glnzs + L — glnwy = ¢

because f'((f*)(t)) = t, which holds since (f*)’ is the inverse of f’, a standard property of the

Legendre transform for convex functions, for all ¢ > 0 in the range of f’. In summary,
%)+ floe(x) = ¢ VxeX, (3.48)

and

(o(x) + f'(0e(x)))oe(x) = loy(x) Vx€EX. (3.49)

By the Kantorovich Duality Theorem and the convexity of f, for all 0 € Z2,.(X),
E(o,00) = Te(0, 00) +/ f(o)dc?
X
> / pdo + / ©¢doy + / (f(ag) + f'(00) (0 — O'g)) ac?
X v x

— Bloy,00) + / (¢ + f'(00)) (0 — o) AL (3.50)

X

since @ is an optimal Kantorovich potential for the transport from o, to itself. Therefore, by

(3.48), (3.49) and (3.50),

E(o,00) > E(0y,00) + E/ (o0 —oy) dce = E(oy,00),
X
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and so oy = argmin, ¢ 4 (1) E(0, 0¢), as claimed.
In conclusion, we have shown that o.[o,] = 0, and T,, = Id. Therefore the time-independent

map [0,7] 5t — o = 0y is a weak solution of (3.1), as required. O

3.6.2 Single particle example

In the case of a single seed particle (N=1), the semi-discrete optimal transport problem be-
comes trivial, allowing for the construction of an explicit solution. With only one particle, its
associated Laguerre cell encompasses the entire domain X, effectively collapsing the problem
of domain partitioning. This is guaranteed under the conditions on the particle’s location that
we make explicit in the following proposition. This simplification means the optimal weight
and the cell’s centroid can be calculated directly by integrating over the known domain. Con-
sequently, the ordinary differential equation governing the particle’s motion can be written in
a closed form.

To ensure these integrals yield a clean, analytical solution, we select the specific value of
~v = 2. It’s important to note that the more physically meaningful range is v € (1, 2); however,

deriving a similarly explicit solution for these non-integer values is not straightforward.

Proposition 3.6.3 (Elliptic orbit of a single seed). Fiz v = 2, k = % and T > 0. Let
X = [—a,a] x [=b,b] x [0,h], where a,b,h > 0. Letz € Y be the initial position of the particle.
Define z : (—oo0,00) — Y to be the solution of the linear ODE

0 —-A 0
zit)=for | B 0 0]z,
0 0 O
z(0) =z,
where
X|f? X|f?
A:l——| |_C°fb2, le——| |_C°fa2, |X| = 4abh.
373 373

Assume that Z3 > % max{a?, b*} so that A > 0 and B > 0. Define the ellipse E C'Y by

N em2y e U B _F T
Ezz{z(t):tE(—oo,oo)}:{(yl,y2723)ER x {zZ3} : Z+§:Z+§}'
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Assume additionally that Z3 is sufficiently large so that

1 1
o(x,y) — m/Xc<.,y) AL < V)€ X xE. (3.51)

Define o : [0, 7] = P:(Y) by ap = d,). Then the following hold:
1. The optimal weight map w, : D — R (defined in (3.4.1)) satisfies the following:

w*(z(t)):% (1—|—/Xc(x,z(t))dx) Vi€ (=00, 00).

2. The optimal source measure o.[oy] € Pac(X) is given by
oe[au](x) = wa(z(t)) — c(x, 2(t)).

3. « is a weak solution of the compressible SG equation (3.1). In particular, the trajectory
of the seed is the ellipse £. Moreover, if a = b, then the seed moves on a circle. If

Z1 = z9 = 0, then the seed is stationary.

Proof. Since v =2 and k = %,
2 ift >0,

0 if t <0.

Define w : (—o00,00) — R by

w(t) = % <1+/Xc(x,z(t))dx) |

Then, for all x € X, t € (—00, ),

1

wlt) = el 2(t) = 7 (1 +/Xc(>~c,z(t))d5() (%, 2(t) > 0

by (3.51). Therefore

ew(t)a() =1~ [ (£)(w(o) - el a(t) dx =1~ [ (w(t) ~ elx2(t) dx =0,

X

hence w(t) maximises the concave function G(+, z(t)). Since the maximiser of G(+, z(t)) is unique

by Theorem 3.3.4, it follows that w.(z(t)) = w(t), as claimed. The expression for o,[a;] then
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follows immediately from (3.22).
It remains to prove that a is a weak solution the compressible SG equation (3.1). By

Proposition 3.4.5, it suffices to show that z satisfies the following ODE:
21(t) = feor(=22(t) + Ca(2(t))),
L(t) = feur(21(t) — Ci(z(1))),
24(t) = 0.
In other words, we need to show that
Ci(z(t) = (1= B)zi(t),  Ca(z(t)) = (1 — A)z(h).

We will just verify the expression for C; the expression for (5 is similar. By Definition 3.4.2

and the symmetry of the domain X,
Ci(z(t) = / T 04|y (x) dx
X

_ /Xxl (w.(z(t)) — c(x, z(t))) dx

2 2

1 a b h
— __—/ / / 1 ( (g — zl(t))2 + =X (zy — 22(t))2 + g:v;;) dos dzs day
Z3 J_aJ-bJo 2 2

2 a b h
= %/ / / w121 (t) dos doy day
23 J—aJ-bJo

4a3bh f?
— cor Zl (t)

333
= (1= B)x(),

as required. N
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3.7 Technical Details

3.7.1 Assumptions on the fluid domain X

Recall that ® : R® — R? is the diffeomorphism defined by
Q%) = (foor 215 foor @2, 97" (23 — 3 feor (27 +23))) -
In this section we discuss the assumption that the fluid domain X’ satisfies
d1(X) is convex. (3.52)

In particular, we give examples of domains X satisfying (3.52), we prove that (3.52) is equivalent
to X being c-convex [46, Definition 1.2], and we prove that, given any c-Laguerre tessellation
{Li(w,z)}Y,, then {®~1(Li(w,z))}Y, is a classical Laguerre tessellation (with respect to the
quadratic cost). In particular, ®=*(L{(w,z)) is a convex polyhedron for all i. Moreover, we

will see that the cost ¢ satisfies Loeper’s condition [46, Definition 1.1].

Remark 3.7.1 (Interpreting ® in terms of c-exponential maps). Let yo = (0,0,1). It is easy to
check that @ is the c-exponential map expy [46, Remark 4.4]:

P = expj, = (—Dyc(-,yo))_l

In other words,

—Dyc(®(x),y0) = x.
Note that c-exponential maps play an important role in regularity theory for semi-discrete
optimal transport [46].

Ezample 3.7.2 (Domains satisfying assumption (3.52)). Let (a1, as,a3) € R3. It can be shown
that any paraboloid of the form

2
X, = {x €ER®: 23 < — 2g (1 — a1)* + (22 — a2)?) + ag} (3.53)
satisfies (3.52). Its inverse image ®~!(X}) is a half-space of the form
(X)) = {p € R®: p3 < bypy + bapa + c},
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where by, by, ¢ € R. In particular, it is convex. Replacing the inequality < in (3.53) by > gives

another example of a set satisfying (3.52). Another example is the half-space
Xy={xeR:x-n>d}
where d € R and n € R® with ng > 0. Its inverse image ®~'(X;) has the following form for

some b € R?, c € R:

n
@_I(Xz)z{pGRgz : (p?+p§)+b-p+6§0}~ (3.54)

cor

This is convex because it has the form {p € R : F(p) < 0} with F convex. We can build other
examples by using the fact that any intersection of sets satisfying (3.52) also satisfies (3.52).

For example, “blister pack” sets of the form

2
Xy = {X€R310§$3 < - 2cor (21 — a1)* + (22 — a2)?) +(l3}

9

satisfy (3.52) for all a € R3. It can be seen from (3.54) that the half-space {x € R® : x-n > d}
does not satisfy (3.52) if ng < 0.

Remark 3.7.3 (Rectangular domains do not satisfy (3.52)). Rectangular domains of the form
X = [a1,b1] X [ag, by] X [as, bs] do not satisfy assumption (3.52). These domains are perhaps
the most natural from a physical point of view. However, in this case an alternative, bespoke

argument can be used to prove Corollary 3.7.7, and hence Theorems 3.1.1, 3.1.2; see [49].

Recall the following from [46, Definitions 1.1 and 1.2]: The cost c¢ satisfies Loeper’s condition
if, for each y € Y, there exists a diffeomorphism @, : R* — R? such that the map

R3>x— c(Dy(x),y) — c(Py(x),2)

is quasi-convex for all z € ) (meaning that its sublevel sets are convex). If in addition the set

®,1(X) is convex for each y € Y, then we say that X is c-convex.

Lemma 3.7.4 (Loeper’s condition and c-convexity). Let x € X, y,z € ). Then

1 C201“
(2).y)=— o || o | +50 (vi +v3) - (3.55)
xT3 -1
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In particular, v : R — R defined by

is affine and the cost c satisfies Loeper’s condition. Moreover, X satisfies assumption (3.52) if

and only if X is c-convex.

Proof. Equation (3.55) is a direct computation. Since wu is affine, then it is quasi-convex.
Therefore, by definition, ¢ satisfies Loeper’s condition (with ®, = ® independent of y), and

assumption (3.52) is equivalent to c-convexity of X. O

To prove that ¢ satisfies Loeper’s condition, we could have also chosen the c-exponential
maps @y, = expy = (—Dyc(-,y))"" depending on y. However, the fact that ® is independent

of y (and that u is affine) has important consequences, as we will now see. Let
DY = {y = (yl,...,yN) c (R*)N :y' # y/ whenever i #j} :

Recall the following definition:

Definition 3.7.5 (Classical Laguerre tessellations). Given (1p,y) € RY x DY the (classical)
Laguerre tessellation of ®~(X) generated by (1p,y) is the partition {L5(1p,y)}Y, defined by

Ly(y) = {x € 27 (X) s [Ix = y'|* =" < [lx = y'|* =4/ Vj € {1,... ,N}}.

The Laguerre cells Lj(1p,y) are the intersection of ®~!(X) with convex polyhedra. Con-
sequently, unlike c-Laguerre cells, they can be computed very efficiently. Classical Laguerre
tessellations arise in semi-discrete optimal transport problems with quadratic cost. The fol-
lowing lemma asserts that c-Laguerre tessellations are just classical Laguerre tessellations in

disguise. It also gives a practical way of computing them.

Lemma 3.7.6 (Rewriting c-Laguerre tessellations as classical Laguerre tessellations). Define

§: 0V = ®) by §(2) = §'(@),....5"(2)), where

21
. 1|
—1
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Deﬁne@:RN x YN 5 RN by

i\ 2 i\ 2 2 2
i ) Zl 22 1 o cor< i\2 7 2)
P =+ (5h) +(55) +(z) -2 (@7 @),

Then, for alli € {1,...,N} and (w,z) € RN x DV,

O (Li(w, 2)) = Ly(3h(w, 2),§(2)).

Proof. By (3.55), for allx € R, z € ), w € RY,

T Zi )
K3 (2 1 cor 2 2 1 2 (2
e(@(x),7) —w' === |y || 5 | 52 () + (3)°) —w
25 2z
I3 —1
= |x =¥ (@) - ¥'(w,2) — [Ix|* (3.56)

Let x € ®71(X). Then

x € 0N Li(w,z) <= c(P(x),z")—w <c(P(x),7)—uw V]
= x=F@) -V w2) < |x—§ (@) - (w,z)
—  xeLy(w,z),5(2),

as required. N

3.7.2  Proof of Lemma 3.3.6

In this section we prove Lemma 3.3.6. The main ingredient of the proof is the following lemma.

Lemma 3.7.7 (Regularity theory for semi-discrete optimal transport). Let ( : X — R be

continuous. Let U C RN x DY be the open set

U

{(w,z) ceRY x DY : L3(Li(w,z)) >0Vic {1,...,N}}.
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Define ¥ = (U ... ON): U — RY by

U'(w,z) := /Li( )((X)dx.

Then W is continuously differentiable. Moreover, for all j € {1,...,N} \ {i},

= [
(w,z) = —
ow? Li(w,z)NLi(w,z) HVXC<X7Z

((x) 2(x
N = Vaeelx, 2] dH(x), (3.57)

AL / Vye(x,27) ¢(x) 9
- (w,z) = . . H(x), 3.58
02 ") = sttt [V 2) — Vel )] ) (359
and
A oI AL owJ
o' (’lU,Z) - — Ow' (’lU,Z), %(wa Z) - — 7 (wa Z)‘ (359)

This lemma could be proved using [27, Theorem 1], by proving that our transport cost ¢
satisfies assumptions (Diff-2) and (Cont-2) of [27]. However, this is very involved. We give a

shorter proof using Lemma 3.7.6 to reduce to the case of the classical quadratic transport cost.

Proof. Note that det(D®) = f_2¢g~! > 0 is constant. By the change of variables formula and

C

Lemma 3.7.6,
U (w,z) = / ¢dL? = / (o ®det(DP)dL? = det(D(I))/ ) Cod®dL?.
Li(w,z) o~ (Li(w,2)) Ly(9(w,2).5(2))
Let Uy C RY x DY be the open set
U= {(0.3) €RY x DY+ (L) > 0¥ € (1,00, N .
Define ¥y = (Ul ... UY): Uy — RY by
Wwy)= [ cee)ix

Li(ty)

Then

U (w,z) = det(DP)Wy(¢p(w, z),¥(z)). (3.60)

By assumption (3.52) and [27, Proposition 2|, W, is continuously differentiable and, for all
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jge{l,...,N} \ {i},

ov’ 1

— ®(x)) dH(x), 3.61
70 Y = AT gy o
ows 1 ; 2
2 (4 y) = —— 7 —x)¢(B(x)) dH2(x), 3.62
e O = g L ) a0 (3.62)
. M gy)= -3 :a‘l’j Wy, Ly =-3 Wy (3.63)
oyt = o % = o

Note that (@(w,z),?(z)) € U, for all (w,z) € U. Therefore, by the Chain Rule and the
smoothness of 17; and y, it follows that W is also continuously differentiable.

Next we compute U /0w’ for i # j. For brevity let

Li = Ly($(w,2),5(2)) N Ly($h(w,2),7(2)).

Then

oWl z 3{ﬂ\k

owJ

N
(w,z) = det(DP Z
k=1

ov

¢(¢( z),y(z))

= det(D®)

det(D®P) )
= T 2yi(z) -39 o ¢ d#”. 3.64
5a) 5@ sy © (3.69)

By the generalised area formula (see, e.g., [3, Theorem 2.91] or [11, Equation (2.7)]),

e (o C
CoddH _/ M /Ll( a2, (3.65)

Ly (L) Jpod~! i (w,2)NL (w,z) Jp o d~!

where Jp : R? = R is the Jacobian

Jo = |(D®) " n||det(DP),  n= ngg; :ggill

Note that n is the outer unit normal to Lg({l\;(w, z),¥(z)) on the face LY. We will prove below
that Jp o ®~! is uniformly bounded from below by a positive constant, hence the integrals in

(3.65) are well defined and the generalised area formula is valid.
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By equation (3.56),

o(x,7') —w' = =207 (x) - §'(2) + [|§"(2)||” — V' (w, 7). (3.66)

Differentiating this with respect to x gives
Vxe(x,2') = =2(D07(x))"¥'(2) = —2(D®(27'(x)) " ¥'(2).
Therefore
: : 25 (DL vi(z) — !
||VXC(X, ZZ) _ VXC(X, Z])H _ JCP( (X))Hy (Z) y (Z)H

. 3.67
det(D®) (3.67)
Combining equations (3.64), (3.65) and (3.67) proves (3.57), as required

Next we prove a lower bound on Jp o @71, Let z € D}’ and n = min,; |2}

— 2| > 0. Then
||VXC(X7 Zi) - VXC(X, Zj)” > |8$3C<X, Zi) - axsc(xa Zj)| = g|z—f’ > 97752 (368)
2323

since z',z7 € Y = R? x (§,1/6). By (3.67), for all x € X,

fCOI‘ 7)62
2y (2) =y (@)

. _ det(D®)||Vxe(x, 2 ) Vie(x,z7)||
T2 () = 59(2) - 5@

which is the required uniform lower bound.

Next we prove (3.58). Differentiating (3.66) with respect to z' gives

Vel ) =2 (@) (~0700 +5(a) - G woa)

o (3.69)

By (3.60), for all i # 7,

ov’

g7 (%)
~ dct(D2) (8 w2 3@ 5 w0+ () 3 <@<w,z>,§<z»>
det(D®) 0y

T2Fi(z) — 3 (2)| L?C@(x))d (%) 55 (w.2)

oy’ i} det(D®) S x . "
* (8zj( )> 5 (z) — 39 (2)]| Léj(y( ) = x)((P(x)) dH*(x)
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_ det(DP) L ,
2[5(2) — V@) Jowy) Je(P7H(x)) dH (%) 57

o5 \'det(D®) (¥7(2) ~ 9GO
(azf”> 5@ 5@ oy Ja@ () )

det D<I> 8}’] T N ) 87:53 )
2”y || / Z]) JtI) o (I) T FH-1 (2 <8Z]( )) (yf(z) —d ) — ﬁ(’u%z)) dH~.

Combining this with (3.67) and (3.69) proves (3.58), as desired.

Finally, (3.59) follows by differentiating

i\lﬂ(’w,z) = /XC(X) dx

with respect to w' and z'. O
Finally we are in a position to prove Lemma 3.3.6.

Proof of Lemma 3.3.6. For each i € {1,..., N}, define the auxiliary function 2’ : U x U — R
by
hi(w17Z17w27Z2) = / C<X7 w27z2) dX
L'L (w1 Zl)

Then Vi(w,z) = hi(w,z,w,z). Fix an arbitrary point (wg,zo) € U and let K C U be a
compact neighbourhood of (wy, z) such that |z4 — z§| >nforalli,je{l,...,N}, i #j, for
some 1 > 0. We will prove that h’ is continuously differentiable at (wy, zg, wq, Zo), and hence

U’ is continuously differentiable at (wyg,zo). To be precise, firstly we will prove that

oh' Ohl
V (wsq,2z9) € U, %(, -, Wa, Zo) and 87(, -, Wa, Zy) are continuous in U, (3.70)
1 1
Oh' . . . . . .
5 (wy,21,-, ) is uniformly Lipschitz continuous in K, (3.71)
w, (wl,zl)GK
Oh’ . . . . . .
5 (wy,21,-,") is uniformly Lipschitz continuous in K. (3.72)
Z (w1,z1)EK

Here uniformly Lipschitz means that the Lipschitz constants are independent of (wq,2z;) € K.

It follows from (3.70)-(3.72) that the partial derivatives Oh'/Ow; and Oh'/dz, are continuous
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at (wo, 29, Wo, Zp). Secondly we will prove that

7

8z2

(wq,21,-,-) are continuous in U,

oh'
v (wl,zl) S U, a—u]Q(wl,Zl, ',') and

925"

8’w2

(3.73)

on' oh'
{ (s, wo, ZQ)} and { s, Wa, zz)} are equicontinuous in K.
(w2,22)€K (wa,22)€K

(3.74)

Therefore the partial derivatives Oh' /0w, and Oh'/0zy are also continuous at (wy, zg, Wwo, Zo)-

Step 1: proof of (3.70)~(3.72). By Lemma 3.7.7, the function h'(-, -, wa, z5) is continuously

differentiable in U for all (ws,z2) € U. (Here we have used the assumption in Lemma 3.3.6

that (-, ws,2z9) is continuous.) This proves (3.70). Moreover, we read off from Lemma 3.7.7

that, for all j € {1,..., N} \ {i},

aw{ Li(w1,21)NLE (w1 ,21) | Vxe(x, ZZl) — Vie(x, Zi)”

0 o 0 ) = | Ve 2) ((x, 3, 72)

0z} Li(wy,21)NLE (w1 ,21) | Vxe(x, le) — Vxe(x, ZJl)H

M (x),

and

Oh' Oh?
»(wlazl,w%zz) = —Z -(wl,Zhwz,ZQ),

(A (A

ow} P ow

Oh' OhJ
a i<wlazlaw27z2) = - a i(w1,Z17w27Z2)-

“1 7 OO

Next we prove (3.71). For all x € X, (w1,2,) € K,
IVxe(x, 21) = Vxe(x, 21)|| > gnd?

by (3.68). For all (wy,21), (ws,2s), (Wq,Z2) € K and all 4,5 € {1,..., N}, i # 7,

oh' oh' SO
J (w17zl7w27z2>_ b ('UJI,Zl,'LUQ,ZQ)
ow, w
S / ‘C(X7 w27Z?) — <(X7 w27?2)| dH?(X)
Li(wiz)nLi(wim) [|[Vxe(X,2]) — Vxe(x, 7))
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< H(Li(wy,21) N Li(wl,zl))Lg(K)

||('w2,z2) - (1772,Z2)||, (379)

where L(K') was defined in the statement of Lemma 3.3.6. Define

FI = {x € B cfx,2) — wf = e 2) — uf}
Note that L’ (wy,z;) N L (wq,2;) C fY. By [31, Theorem 2.8],
H* (L (wy,2,) N L(wy,21)) < HA (XN fY)
< Lip(®|x)*H? (@71(X N f7))

= Lip(®[x)*H* (271(X) N &7'(fY))

(3.80)

diam(fl;‘l(?f))>2 |

< Lip(®|x)* 7 (

where in the last line we used the fact that ®~1(f¥) is a plane (by Lemma 3.7.4) and the iso-

diametric inequality. Combining (3.79) and (3.80) proves that Oh' /0w (w, 2y, -, -) is Lipschitz

continuous in K with Lipschitz constant independent of (w;,z;) € K. By (3.77), the same
holds for Oh'/Ow}(w;,z1,-,-). This proves (3.71). The proof of (3.72) is very similar.

Step 2: proof of (3.73), (3.74). First we show that the partial derivative Oh'/dw, exists. Fix

(wy,21,ws,22) € UxU and let k € {1,...,N} and € € (0,1). To show that i is differentiable

with respect to ws, consider the difference quotient

hi(wla Z1, W3y + €€y, ZZ) - hi(wla Z1, W2, ZQ) _ / C(Xa wso + €€k, ZZ) - C(Xa ws, ZZ) dx
Li(wi,21) 7

£ £
where {e;}}, is the standard basis of RY. Note that

lim C(x, wy + cey, z2) — ((x, wa, 22) _ %(X’ wy, 7)
e—0 12 8'w

for all x € S(wy,2,), in particular, for £3-almost every x € L’ (wy,z;). Moreover,

C(x, W + ey, 22) — ((X, Wy, 22) | _ L(K)
i ~ ;

where K = {(ws + pey,zs) : p € [0,1]} and L was defined in the statement of Lemma 3.3.6.
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Therefore, by the Lebesgue Dominated Convergence Theorem,

ohi 8
= _— dx. .81
Do, (w1, Z1, wa, Z3) /Lé(whm) S (x, wo, zo) dx (3.81)
Similarly,
Ohi ¢
= == dx. )
aZQ (w17Z1,w2,Z2) /LQ(U}LZl) 8Z (X, ’UJQ,ZQ) X (3 82)

Then (3.73) follows from the assumption that the partial derivatives 9 /0w(x, -, ), 9(/0z(x, -, -)
are continuous at (ws, z9) for all x € S(wy, z), along with another application of the Lebesgue
Dominated Convergence Theorem.

Finally we prove (3.74). For all (w1,2;), (w1,21), (we,22) € K,

(’UJl,Zl,'LUQ,ZQ) - ('UJl,Zl,'lUQ,ZQ)

H oh' on'

an 8w2

:

/L %(x, wQ,ZQ)dx—/ g—’i(x,’wQ,ZQ)dx

Ly 7) OW

Li(w1,21)
0
< max a—w(xy’wz,h) ||XL§(17;1,21) - XLg(wl,zl)HLl(X)
< L(K) || Xzi(@1.20) — XLg(wl,zl)HLl(X) : (3.83)

It can be read off from the proof of [53, Proposition 38(vii)] that

”XLg(ﬂ;l,El) - XLg(wl,zl)HLl(X) —0 as (1711,§1) — (w17zl)-

Then, by (3.83), Oh'/0ws,(-, -, ws,2zs) is continuous on the compact set K, hence uniformly
continuous, and moreover its modulus of continuity is independent of (ws,z2). The same holds
for Oh'/0zs(-, -, W, z2). This proves (3.74).

Step 3. The expressions for the partial derivatives of ¥? in the statement of Lemma 3.3.6

can be read off immediately from (3.75)—(3.78), (3.81) and (3.82). O
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(a) 5 Laguerre cells (b) 10 Laguerre cells

(c) 25 Laguerre cells (d) 50 Laguerre cells

Figure 3.2: c-Laguerre tessellations (see Definition 3.2.8) in the (z1,x3)-plane for the cost
function ¢ = cyq (see (3.16)). The colours distinguish the cells. For each plot, X = [0,1]?
feor = 1, g = 1, the seeds z' were sampled uniformly from X, and the weights w® were chosen
so that the cells have equal area (by maximising the dual function as in (3.19)).
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Geometric Conditions on the Physical Domain

4.1 Introduction

In Chapter 3 we proved the existence of weak solutons under the assumption that X is c-
concave. This excludes rectangular domains. In this chapter we give a bespoke proof for

rectangular domains.

4.1.1 The dGKL Conditions

The solution to the semi-discrete optimal transport problem partitions the source domain into
regions called Laguerre cells. The boundaries between these cells are key to the dGKL con-
ditions, which involve measuring the volume or area of a small neighbourhood around these
boundaries.

Given € > 0 and a set A C R?, we define the e-neighbourhood of A by
N.(A) = {X cR?:inf |[x —y| < 8}.
yEA

Thus the neighbourhood N7_. is the set {x : |di(x)| < L.e}. Let (w,z) € RY x DV. The

face between two cells, L’ and L/, is contained in the set
f(w,z) = {x e R : ¢(x,2") —w' = ¢(x,27) —w'}, (4.1)

fori,j € {1,...,N}, i # j. In addition, following the notation of [27], for all i € {1,... N},
define f(w,z) := 0X. We will opt for more classical notation in the proof.

Since the cost ¢ is twisted, the sets f¥ are C1!, 2-manifolds by [54, proof of Proposition 37].
We characterise them below in Lemma 4.2.1. If the Laguerre cells L. (w, z) and L!(w,z) share

a face, then this face is contained in f“. To be precise, L:(w,z) N Li(w,z) C f¥(w,z).
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The following technical conditions were introduced in [27]. These are a set of geometric
requirements designed to ensure the Laguerre tessellation is sufficiently well-behaved, which
is a crucial prerequisite for establishing the regularity of the right-hand side of our governing
ODE (Eq. (3.6)). The baseline assumption is the C* smoothness of the cost function, which
allows the cell boundaries to be defined as smooth surfaces. The remaining conditions prevent
these surfaces from forming pathological configurations. The non-degeneracy condition ensures
that the boundaries between any two cells are sharply defined, while the uniform bound on
their surface area controls their geometric complexity. The final conditions govern how these
boundaries intersect to form edges, ruling out pathological features like cusps or tangential
intersections. Taken together, these conditions guarantee that the geometric quantities defining

the ODE’s right-hand side are stable and regular functions of the particle positions.

Definition 4.1.1 (The dGKL Conditions [27]). Let (w,z) € RY x D¥. The dGKL Conditions

consist of the following requirements from [27, Definitions 1 & 2]:
1. ceC*X x ).

2. There exists n > 0 such that for all i,k € {1,..., N}, i # k, and all x € f*(w,z),

| Vxe(x,2") — Vie(x, z")|| > n.

3. For all i € {1,..., N}, there exists g9 > 0 and C' > 0 such that for all j,k € {0,..., N},
Jj # k,and all 1,65 € (0,¢0),

LHX NN, (fM(w,z) NN, (f7(w,2))) < Ceies. (3a)
Moreover,
51111—130%2<X N f*(w,z) NN, (7 (w,z))) = 0. (3b)

4. There exists C' > 0 such that for all i,5 € {0,..., N}, i # j,

H2(f (w,2) N X) < C.

Remark 4.1.2. Conditions (3a) and (3b) in Theorem 4.1.1 correspond to conditions (Diff-2-b)
and (Diff-2-c) in [27, Definition 1]. Note that there is a minor typo in [27, Definition 1]; in
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(Diff-2-b) and (Diff-2-c) the e-neighbourhoods should be intersected with the domain, just as
we intersect the e-neighbourhoods with & in (3a) and (3b). Moreover, in [27, Theorem 1] it is
assumed that X is convex, which is not necessary unless the cost is quadratic. In general, it is
sufficient that the measure o is Hélder continuous on a c-convex set containing its support (see

Definition 3.7.1 for the definition of c-convexity).

4.1.2  Main Results

Having established the necessary definitions, we can now formally state the main theorem of

this chapter.

Theorem 4.1.3. Consider the compressible SG cost ¢ € C32(X x V) given by Eq. (3.9), which
1s twisted. Let X be a rectangular domain aligned with the canonical azes, which we define as
X =[xy, x| X [y, yr] X [B, T'], where the constants x;, ., yi, y, determine the lateral boundaries,
while B and T define the bottom and top boundaries, respectively. If the seeds z' lie in distinct
horizontal planes and L3(L.(w,z)) > 0 then this choice of cost and domain satisfy the dGKL
conditions (Definition 4.1.1).

Corollary 4.1.4. An immediate consequence of Theorem 4.1.3 s that the conditions of Lemma 3.3.6
are satisfied. Theorem 4.1.3 establishes that our choice of cost and domain satisfy the dGKL
conditions, which in turn ensures that the reqularity results for Laguerre cells from [27] hold.
These regularity properties are precisely the hypotheses required by Lemma 3.3.6. The key im-
plication is that the theoretical framework developed in Chapter 3 is therefore applicable to our

specific case of a rectangular domain.

4.2 Proof Theorem 4.1.3

In this section, we prove the four conditions listed in the statement of Definition 4.1.1 for a
rectangular domain, which is not c-convex with respect to the compressible SG cost

1 2 2
o(xy) =~ (ﬂm I L g) | (4.3)
yg 2 2

Recall that the compressible cost maps from X to Y = R? x (4,1/4 for § € (0,1).
Our verification of the dGKL conditions relies on a key technical result, presented in the
lemma below. This lemma provides a crucial bound by relating the geometric e-neighbourhoods

of the boundary and cell edges to more analytically tractable level sets.
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Recall that we assumed X is a rectangle. Consequently, its boundary 0X is the union of

six hyper-planes, each with a constant normal vector parallel to a coordinate axis.

Lemma 4.2.1 (Laguerre cells in physical space). For the compressible SG cost function given
in Eq. (4.3), the set f* = {x € R®: ¢(x,2") — w' = c(x,2*) — w"}, which contains the face

between the Laguerre cells of two distinct seeds z' and z*, has the following geometric form :
1. If the seeds are at the same height (25 = 25), the face f* is a vertical plane.

2. If the seeds are at different heights (2% # 25 ), the face f** is a paraboloid

2

T3 = —% ((ml — A(7, zk'))2 + (22 — B(2', zk))Z) +C(z', 2", w', wh). (4.4)
g
Consequently, any two faces f** and f¥ that are generated by three vertically aligned seeds are

parallel paraboloids.

Proof. The edge f* is defined by the equation c(x,z!) — w® = ¢(x,z") — w*. We analyse this
equation in two cases.

When z° and z* satisfy 24 = 25 = 23, the defining equation becomes

G = Do+ (5 = s = 5 ()74 ()7 - G- () + 22w = o). (49)

This is the equation of a vertical plane.

If 21 # 2%, we rearrange the defining equation to solve for z3. Grouping the terms gives

2 2 ik k .1 2 ik ki
cor (.2 2 cor F173 — #1773 cor 7273 T 29%3 ik i k
x3 = —=F (27 + a5) + s e+ e = g — D(2', 25, w' wh), 4.6
Py ) Ty ey, b0
where
D(z', 7" w', w") = (G (22)21_ Zi((Zf)z +E)) Z32§(2Uk _iw ) (4.7)
29 Z3 — %3 g(25 — 23)

This is the equation of a paraboloid of revolution with a vertical axis. Crucially, the leading

2
fCor

5, is a universal constant, independent of the specific seeds z’ and z*.

quadratic coefficient, —
Finally, consider two faces f* and f“ generated by three vertically aligned seeds, which

share the same (21, 29) coordinates. From the derivation above, both faces are described by

116



Chapter 4: Geometric Conditions on the Physical Domain

paraboloids of the form

2 2
T3 = — 2(:; (23 +23) + Cgor (2111 + 2272) + C, (4.8)
where C' = —D(z!, z*, w', w") for f* and C = —D(z', 27, w', w’) for f4. O

Lemma 4.2.2. Let X C R3 be a compact set. Let G : R® — R be a C? function. Assume that
its gradient does not vanish on its zero-level set, i.e., VG # 0 for all x where G(x) = 0. For
e € (0,1] and g9 > 1, the tubular neighbourhood of the hyper-surface G='({0}) can be bounded

by thickened level sets. This principle is illustrated in Figure 4.1. Formally
X NNA(GH{0))) € X NG Y ([~ae, ag)),
where the constant a is defined by

1
a:= sup [[VG(y)[+5 sw [[VG(y), (4.9)
YEN, (X) YEN, (X)
Proof. Let p be an arbitrary point in the neighbourhood N.(G'({0})). By definition of the
tubular neighbourhood, p can be expressed as p = x + tii(x) for some point x € X NG~ ({0}),
some t € (—¢,¢), and where fi(x) is the unit normal vector to the surface G~'({0}) at x. We
define this normal vector using the gradient of G :
VGE(x)

809 = TSt (4.10)

Our goal is to bound the value of ||G(p)||. Since G € C?, we can apply Taylor’s theorem with
the Lagrange form of the remainder to expand G(p) = G(x + tii(x)) around the point x :
2

G(p) = G(x) + (VG(x) - A(x) + %ﬁ(x)TWG(g)ﬁ(x), (4.11)

for some point ¢ on the line segment between x and p. Since x € G71({0}), G(x) = 0.

Substituting the definition of A(x), the second term becomes

VG (x) - % — t|VGE)]. (4.12)
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The remainder term can be bounded using the Cauchy-Schwarz inequality :
[2(x)" V2GR < [RE)|P|V2EE©)], = [[V*G(©)],- (4.13)

To establish the desired inclusion, we take the norm of the Taylor expansion

t2
60 = 6060 + 760 -2 + ) TG00 | (a.14)
and, using the triangle inequality and the bounds we derived, find
t2
IGEI <1t VG + F VGO, (4.15)
Since [t| < e, we can establish an upper bound
ST
IGE) <= VG| + S [[V*EQ)], (4.16)

Since € € (0,1], we have €2 < e. Furthermore, since x € X and p € M, (X), the point &
must also lie in N, (X). We can therefore bound the gradient and the Hessian norms by their

suprema over this set

|rG<p>||<e( VG + 5 supX)HV?Gug)H)wa (417)

YEN (X) YEN, (
This shows that if p € N.(G7'({0})), then p € G~!(|—ag, ag]), which implies the set inclusion

X NNAGI{0D) C X NG ([ae, ag]). (4.18)

This completes the proof. n

4.2.1  Properties (1) and (4)

The proof of property (1) is immediate by the assumptions on the cost and property (4) follows
equally quickly from the fact that the edges are paraboloids and the domain X is compact.
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Yy

!
&
282

Figure 4.1: A schematic illustration of the principle in Lemma 4.2.2. The intersection of the
tubular neighbourhoods (the dark overlapping region of the red and blue shaded bands) of two
hyper-surfaces, G;'({0}) and G5*({0}), is shown to be contained within the intersection of
their corresponding thickened level sets, which are bounded by the outer curves. The lemma
formalizes this by relating the neighbourhood widths 1, 5 to the level set values a1, ases.

4.2.2  Property (2)

Let i,k € {1,...,N},i#k, and x € f*(w,z). Then

c20r($1 - Zi) gor(xl - Z]f)
VXC(X’ Zz) - VXC<X7 Zk) = Z_é chor(‘r2 - Z%) - % czor(I2 - Z§>
g g
(b ) - s - )
= Lot | st — )~ st

g(Z?]f - Zil’)) c20r

Define
m =min{|z} — 25" : [,m € {1,... N}, 2} # 23"}
Then
i k i k |25 — 2 2
|Vxe(x,2") — Vye(x,2°)|| > [0p¢(x,2") — Opyc(x,2")| = e >gmo=:n  (4.19)
373

since z',z* € Y = R? x (§,1/6). This proves Definition 4.1.1, property (2).
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4.2.8  Property (3a) and (3b) for Edge-Edge Intersections (j,k #0)

Properties (3a) and (3b) for k # 0 follow immediately from Chapter 3. Specifically from the
fact that we can rewrite the diagram as a standard quadratic power diagram, along with the

proof of [27, Proposition 1].

4.2.4  Property (3a) for Edge-Boundary Intersections

We now prove property (3a) for the case of an edge-boundary intersection, j = 0, where one of

the surfaces is the boundary of the domain, 0X. We are bounding the volume
L3 (X NN (F4) 1AL (0), (4.20)

The geometry of the domain is now critical. The faces f** are paraboloids (see Lemma 4.2.1).
We express each face as the zero level set of the function Fji(x) := c(x, z°) — w® — ¢(x, z*) + wF,
so that f* = F,'({0}). Similarly, each face of the boundary is the zero level set of an affine
function G (e.g. G(x) = x3 — T for the top face). We thus express the boundary of the domain
as 0X =J,Gyfor Gy: X - Rand £ € {1,...,6}.

Thus the volume we seek to bound can be controled by:
(2 NN (F5) NG (00)) < 30 LY (N (F9) AL (G (o). (421)
¢

We prove an upper bound on the terms of this sum. The nature of the intersection between
these surfaces determines our approach. The normal vector to a face, VFj, is parallel to a
boundary normal (e.g. (0,0,1)7) only in the specific case where the vertex of the paraboloid is
tangent to the top or bottom face of the domain. This observation leads to two distinct cases
for the proof. Before tackling these cases we introduce a key tool that we will use throughout

the rest of the proof.

Theorem 4.2.3 (Coarea Formula, Theorem 3.13 of [31]). Assume f : R" — R is Lipschitz

continuous. Then

/n |Df|dx = /Oo H L f =t})dt. (4.22)

Assume also

essinf |Df| > 0, (4.23)
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and suppose g : R — R is L"-summable. Then

> g n—1
gdx = / / —— dH" 'ds. (4.24)
/{f>t} ¢ Jyp=sy DS

Transversal Intersection (Normals are Not Parallel)

This is the general case, occurring when a face f* intersects a side face of the rectangle (e.g., at
x1 = x7) or when it intersects the top (x3 = T') or bottom (z3 = B) face away from its vertex.
Here, the normal vectors VFj;(x) and VG,(x) are not parallel.

Since the normals are not parallel, the Jacobian of the map x — (Fix(x), G¢(x)) is uniformly

bounded away from zero. Let

Fax) = 70 (4.25)
Gg(X)

Then, applying Lemma 4.2.2, we can bound the intersection of neighbourhoods by the inter-

section of the thickened level sets
L2(X NN, (f*) NN (0X)) < L2(X N F;{[—aeq, ae1] x [—bes, beal}), (4.26)

where the constants a and b are determined by separate applications of Lemma 4.2.2 to the
functions G; = Fj; and G5 = Gy, and the bound is formed by intersecting the resulting sets.

Specifically, a = ap, and b = a¢,, where for a function ¢

1
ag = sup [Vo(y)ll+5 sup V2o (y) |, (4.27)
YEN (X) YEN (X)

for fixed g > 1. We then apply the coarea formula

L2(X NN (fF) NN, (0X)) < / " / ! dH*(x)dtds,  (4.28)
——aey Ji=—bes JxnEs ((s,0))) TFe(X)

where the Jacobian is Jp, (x) = ||V Fi(x) X VGy(x)||. The crucial step is to establish a uniform

lower bound for the Jacobian. In the the transversal case, the normal vectors are not parallel

by assumption. The set where the edge £ intersects the boundary face within X is a compact

set. Since Fj, and Gy are C? functions, the Jacobian J. F 1s continuous. A continuous function

that is strictly positive on a compact set must attain a strictly positive minimum. We can
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therefore define a uniform lower bound &}, > 0

65 = min ||[VFL(x) x VGy(x)|| > 0. (4.29)

x€ftkNOX
This provides the necessary uniform bound for all relevant x :

1 < 1
JFG(X) N 6z€k

(4.30)

This bound can be made explicit. For an intersection with a side-wall, e.g., G(x) = x; —2; =0

(so VG = (1,0,0)T), the Jacobian is bounded below by

Trg(%) = [V F(3) x (1,0,0)7 | > [0, Far(x)] = (4.31)

g 9
L
Z3 3

Since the seeds z' and z" lie in distinct horizontal planes (2§ # 2%), this value is a strictly
positive constant, providing a concrete realization of the lower bound &%,

Using the uniform lower bound on the Jacobian, and by noting that the curve lengths
HY (X N F;'({(s,t)})) are uniformly bounded by a constant Dy, due to the compactness of

X and the paraboloid nature of £, the coarea integral is bounded by

ag1l beo
C3X AN (F5) AN (92)) < / / / d?—[l(x)dtds (4.32)
—ag1 J —bey J XNF L{(s,t)}
beo
< j}a" / / dtds (4.33)
6zk —ag1 beg
4abDpax
= 5—€€1€Q. (434)
ik

Finally, to obtain a single constant C},.,s valid for all transversal intersections as required by
Definition 4.1.1, we must establish uniform bounds. There are a finite number of edges and
a finite number of boundary faces. We can therefore define universal constants by taking the
maximum over all possibilities. Let amax := max;z; {ap, }. Let byax = maxy {bg,}. Let
Opmin := Milzp 0 {6fk}, where the minimum is taken over all pairs that intersect transversally.

Since the number of functions is finite, ana and byay are finite, and 0., is strictly positive.
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We can now define a single constant C},.,s that works for any transversal intersection:

4amaxbmaxDmax

Ctrans = (435)

6min

This gives the required bound Ci anse1€2 and proves condition (3a), 7 = 0, for the transversal

case.

Tangential Intersection (Normals are Parallel)

This special case occurs when the vertex of the paraboloid f* is tangent to the top (z3 = T))
boundary of the domain. If the vertex of the paraboloid is tangent to the bottom of the domain
the cell is empty which cannot happen.

At this point of tangency, the face normal V F;(x) is parallel to the boundary normal (e.g.,
(0,0,1)T). Consequently, the Jacobian Jg,(x) is zero, and the coarea-based argument form
the transversal case fails. We therefore turn to a direct geometric argument, illustrated in
Figure 4.2 and Figure 4.3.

We need to bound the volume of the intersection between the £;-neighbourhood of the face,
N, (f*), and the eo-neighbourhood of the boundary, N.,(0X). Near the point of tangency,
this corresponds to the intersection of a paraboloid shell of thickness 2¢; and a planar slab of
thickness e within the domain X. The volume of this region can be calculated as the difference
between the the volumes of two paraboloid caps. The volume of a paraboloid cap of height h

with radius r at height A from the vertex is given by

vih)="2 (4.36)

For the specific paraboloids f*. the radius r at a given height A from the vertex is given by

2gh
2 2
cor

(4.37)

This follows from Lemma 4.2.1.
Consider Figure 4.2 and Figure 4.3, these illustrate the two possible scenarios that can occur
in the case of a tangential intersection, €; < €5 or €1 > €9. As the figures illustrate, regardless

of the scenario, the height of the larger cap is houter = €1 + €2 and the height of the inner cap is
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Pinner = |1 — €2|. This leads to a single computation that is valid for both &1 < g9 and g1 > &9

LHX NN () NN (X)) < L3NG (FF) NN, (0X)) (4.38)
S V(houter) - V(hinner) (439)
2 2
TT suter houter TV inner h inner
= — 4.40
5 5 (4.40)
g g
= 7o zuter o 12nner (441)
s
= 29 ((81 + 62)2 — (61 — 82)2) (442)
4
= 798162. (443)
This gives the required bound with a constant Ciang = ;Zﬂ.

We have shown that in both the transversal and tangential intersection cases, the volume
of intersection is bounded by Ceey. By defining a single constant C' = max { Cirans, Ctang }> We
have a uniform bound that holds for all edge-boundary intersections. This completes the proof

of property (3a) for the rectangular domain.

houter{ aX
______ }hinner

Touter

Tinner

Figure 4.2: The tangential intersection of a face f¥ and the domain boundary X when the
edge neighbourhood (1) is smaller than the boundary neighbourhood (e2). The intersection
volume is bounded by the volume of the paraboloid cap formed by the outer shell of the edge
neighbourhood.

4.2.5 Property (3b) for Edge-Boundary Intersections

This property requires us to show that the area of an edge lying in a neighbourhood of the

boundary vanishes as the neighbourhood shrinks, and vice-versa. Formally, we prove
L lim., o H2 (X NOX NN, (f*)) =0,
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houter{

Figure 4.3: The tangential intersection of a face f¥ and the domain boudary OX when the edge
neighbourhood (g1) is larger than the boundary neighbourhood (e2). The intersection volume
is computed as the difference between two paraboloid caps, with heights houer = €1 + €2 and
hinner =& — &

2. lime, 0 HA(X N f* NN, (0X)) = 0.

The proof splits into the two cases as in Section 4.2.4.

Transversal Intersection

We will prove the first limit in detail. The proof for the second limit follows by a symmetric
argument. We seek to bound the area H? (X NoX N /\/'61(]”’“)) Applying Lemma 4.2.2; this is
bounded by H*(X NOX N F;'([—acy, as1])), where a = ag, is the constant form the lemma.

We now apply the coarea formula by integrating the function Fj;(x) over the surface S = XYNoxX

agl 1
H2(X NOX N E N ([—a,e1,ae :/ / —— dH'(x)dt. 4.44
( ik ([ 1 1])) t=—aer J SnF (1) Hvstk(X)H ( ) ( )

The Jacobian is the tangential gradient ||VgFix(x)||. This is the norm of the gradient of the
edge function projected onto the boundary surface, given by ||V Fjx(x) x fi(x)||, where fi(x) is
the normal to the boundary 0X. This is exactly the Jacobian Jp, from the proof of property
(3a), which we established is uniformly bounded below in the transversal case by a constant
Smin > 0. Again, the length of the intersection curves H'(SNF,' ({t})) is uniformly bounded by
a constant Dy, due to compactness and the paraboloid nature of f%*. The integral is therefore

bounded

) agl 1
H* (X NoX NN, (fF)) < / / ———— dH' (x)dt 4.45
( (7)) t=—aey Jsr () 1 VsFin(x)|] &) (4.45)
< / Dmaxdt (4.46)
t=—ae; Omin
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2 Dmax
_ D0 max (4.47)
5min
= C'e;. (4.48)

Since this bound is linear in ey, it vanishes as £; — 0, proving the first limit. A symmetric
argument, which involves integrating over the edge surface f** instead of the boundary, proves

the second limit.

Tangential Intersection

When the edge f** and the boundary X intersect at a single point, two distinct scenarios arise
regarding how the intersection vanishes.

The first scenario, illustrated in Figure 4.4, focuses on the measure H?(X N oX NN, (f*)).
As g1 approaches 0, we demonstrate that this measure also approaches 0.

As depicted in Figure 4.4, the region of intersection can be described by a circle. Following

the proof for tangential intersection in property (3a), the radius of this circle is given by :

2k

r?(h) = = (4.49)
Therefore, the limit of the measure as ¢; approaches 0 is :
: 2 ik . 2gm
lim 72 (X NOX NN, (f*)) = lim ——&; = 0. (4.50)
e1—0 e1—0

cor

The second scenario, shown in Figure 4.5, concerns the measure H?(X N f* NN, (0X)).
We aim to show that this measure tends to 0 as €5 goes to 0. As shown in Figure 4.5, the area

of intersection is described by the surface area of paraboloid, given by :

S(h) = ”gé’;) (\/ (r(h)? + 4h2)° — r(h)3). (4.51)

Consequently, the limit of the measures as e, approaches 0 is :

(f2, + g2)%s
12
cor

lim H2(X N f* AN (0)) = lim 97 | —ge 4 g8,

= 0. 4.52
ea—0 g0—0 3fc80r€2 ( )

This concludes the proof of property (3b) for all edge-boundary intersections.
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Figure 4.4: Scenario 1 : The intersection of X with a neighbourhood of f*. The main figure
(left) shows the edge f** (red curve) tangentially intersecting the boundary X (blue line) at
the origin. The shaded red region represents the e;-neighbourhood around f*. The dashed
box indicates the region zoomed in on the right. The zoom-in figure (right) is a view from the
top down on the point of intersection and illustrates the circular region of intersection, with its
radius r marked.

Figure 4.5: Scenario 2 : The intersection of f* with a neighbourhood of 9X. The main figure
(left) shows the edge f% (red curve) intersecting the boundary dX (blue line) at the origin.
The shaded blue region represents the e5-neighbourhood around dX. The dashed box indicates
the region zoomed in on the right. The zoom-in figure (right) illustrates the paraboloid region
of the intersection, with its height h and radius r marked.
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Chapter 5

2D Compressible Model

5.1 Introduction

In this chapter we derive a 2D version of the compressible SG equations and its weak formula-
tion. This will serve in future work as the first model for numerical simulations, on the way to

a numerical solution of the full 3D SG equations.

5.1.1  OQutline of the Chapter

This chapter is organized as follows. In Section 2, we introduce the 2D compressible SG
equations. To derive a reduced model for a compressible, stratified, and rotating atmosphere
we start from the full compressible Euler equations and apply the hydrostatic, vertical slice, and
semi-geostrophic approximations. A coordinate transformation to geostrophic variables then
leads to a novel variational formulation and an optimal transport problem. We present the weak

form and non-dimensionalization of the system to highlight the key governing parameters.

5.2 Derivation of the Slice Compressible Model

In this section we derive the slice compressible model, a system designed to emulate key at-
mospheric dynamics within a two-dimensional vertical slice. While this model is not a direct
reduction of its three-dimensional counterpart, it is constructed from the compressible Euler
equations by incorporating a series of physically-motivated approximations. We begin by pre-
senting the governing equations and the necessary thermodynamic closure before applying the
vertical slice, hydrostatic, and semi-geostrophic approximations to arrive at a simplified system
capturing the essential dynamical balances. Subsequently, we introduce a coordinate trans-
formation to geostrophic variables and derive the corresponding weak form of the governing

equations. This systematic derivation provides the foundation for the discrete particle system
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we intend to simulate in the future.

5.2.1 Governing Equations and Physical Assumptions

The crucial step is the introduction of a vertical slice geometry, which is necessary because,
unlike in the incompressible case, a quasi-2D solution cannot be found by simple reduction of
the 3D compressible model. The system is then further simplified using the semi-geostrophic
approximation to isolate the large-scale balanced flow relevant to frontogenesis. These steps,
combined with the necessary thermodynamic closure relations, define the final model equations

for our analysis.

Fully Compressible Model

We begin with the three-dimensional compressible Euler equations, formulated for a stratified,
rotating atmosphere. The state of the system at a point x = (1,2, x3), corresponding to
longitude, latitude, and altitude, respectively, is described by the velocity field u = (u, v, w),
the density p, and the potential temperature . The thermodynamic state is closed by the
equation of state for a dry ideal gas, which relates the pressure p to the density and temperature

via the Exner pressure II :

p = pR4OIL,
(5.1)
v—1
I(p,0) = (deQ) :
Po

where pg is a reference pressure, v = ¢,/c, is the adiabatic index, and R; = ¢, — ¢, is the
specific gas constant for dry air.

Once again we adopt the hydrostatic approximation, which assumes a balance between the
vertical pressure gradient and gravity. Under this assumption, the governing equations in a

reference frame rotating with frequency f... about the vertical axis &3 are the following:

(

Diu + feor€3 X u+ ¢,0VII + gés = 0,

\\

Op+ V- (pu) =0, (5.2)

Dt® == O,
\
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where © is the full potential temperature and the material derivative D, is given by :

9, 0 0 0 0
Dt_a—i_u‘v_ajLu@xl+Uax2+w8m3' (53)

Vertical Slice and Semi-Geostrophic Approximation

To construct the model, we first apply the vertical slice approximation. Following the framework

in [17], we consider a two-dimensional domain
X :=[-L,L) x |0, H], (5.4)

which represents a vertical slice of the atmosphere in the z;-x3 plane. The model is periodic
in the z;-direction and we assume rigid boundaries at the top and bottom. The velocity
field u = (u, v, w) is decomposed into its in-slice component ug = (u,w), and the transverse
component, v.

The central assumption is that all fields are independent of the transverse coordinate x5,
except for a background temperature gradient that is necessary to support baroclinic insta-
bility. Accordingly, the in-slice velocity ug, density p, and the in-slice potential temperature
perturbation 6 are assumed to depend only on (x1,z3,t). The total potential temperature © is
decomposed as

O(x1, 79, T3, 1) = Oy + O(2) + (21, 23, 1), (5.5)

where 6 is a constant reference temperature and 6(xy) = sz, is a background stratification
profile, with s representing the background vertical shear. The model is then formulated in
terms of the in-slice perturbation 6.

The momentum equations from the parent model are replaced by diagnostic balance rela-

tions, which represent an assumed geostrophic and hydrostatic equilibrium :

1
v= _Cpeaxlna (56)
g
0=— 5.7
CpOy, 11 (5.7)

The model is completed by the remaining prognostic equations from the Euler equations. These

are modified with the ad-hoc terms identified in [67] to emulate the effect of the transverse
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temperature gradient, forming the semi-geostrophic slice compressible model first introduced
in [17, Remark 5.3]. It was derived from the Euler equations (Eq. (5.2)) by making the slice
ansatz, using the SG approximation (Eq. (5.6) and Eq. (5.7)), and adding an adhoc term to
the right hand side of Eq. (5.2) to emulate the Eady Slice model, which we presented as a

benchmark case in Chapter 2.

(Div + foore = sc,(IT—1TIp) in X x [0, ], (5.8a)
D0+ sv=0 in X x [0,tf], (5.8b)
Dip+pV -ug=0 in & x [0,tf], (5.8¢)
VI = (feorv, —g)" in X x [0, ], (5.8d)
ug-n=0 on X x [0,t;]] N{zx3=0,H}, (5.8e)
ug(—L,x3) =ug(L,x3) on X x [0,%y]. (5.8f)

\

Here the in-slice material derivative is D; = % +us - Vy = 0 + u0,, + w0o,,, and 1l is the

initial spatial average of the Exner pressure,

m:fﬂ@, (5.9)
X

which is included to reduce the mean horizontal flow. In this formulation, the transverse velocity
v is influenced by both the Coriolis force and the background shear s.
This system of equations has not been analysed rigorously, hence we assume the existence

of a solution and we proceed formally.

5.2.2  Derivation of the Semi-Geostrophic Equations in Geostrophic Coordinates

Define a new quantity o,(x) = p(x,t)0(x,t) and assume that at t = 0, [, o9(x)dx = 1. By
combining Eq. (5.8¢c) and Eq. (5.8b) we find

p(Dif + sv) +60(Dip+ pV -ug) =0 (5.10)
> pof+00,p = —pus - VO —bug - Vp— pdV - ug — psv (5.11)
<  pd+00,p = -V - (pbug) — psv (5.12)
<~ Oy = -V - (oug) — %sv. (5.13)
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Lemma 5.2.1 (o is a Probability Measure). Assume at time t = 0 that [, dog(x) = 1, then
o € @ac(/’v) fOT all t.

Proof. Our goal is to show that the time derivative of [ » doy(x) is zero. Note the following

relationship

—1
010, (U;/_l) =(y— 1)0t02/_2(9$10t = (VT) Oy, 07 . (5.14)

Using the geostrophic balance relation Eq. (5.7) and the equation of state (Eq. (5.1)), the source

term in Eq. (5.13), can be rewritten as

ot (5.6) SCp

07" " for

. Ry\"! 16
010,11 @ ;Cp (—d> 010,07 (LY CO,, 07, (5.15)
cor Do

where the constant C' is defined as

-1
o-5(2)"(5) -
fcor Po Y (5 16)

Thus, the evolution equation for oy, Eq. (5.13) can be written as

8t0—t + V- (O'tUS) = —085,;10'?. (517)
Now we compute directly
d
— | doy(x) = / 0oy (x) dx = —/ V- (opug) dx — C’/ Oy, 07 dx (5.18)
dt Jx X x X
= / oug - ndH! — C/ Oy, 07 dx (5.19)
ox x
H (L
= / oug - ndH! — C/ / Oy, 07 da dag (5.20)
ox o J-r
H
= / oug - ndH! — C’/ o) (=L, x2) — 0] (L, xs) dzs (5.21)
ox 0
H
= / oug - hdH' — 0/ 0dz; (5.22)
ox 0
L L
_ / oo, H)w((an, H), 1) day — / oo, Hyw((en, H), ) der (5.23)
~L -L

132



Chapter 5: 2D Compressible Model

+/0 at(L,xg)u((L,xg),t)d$3—/0 o(—L,z3)u((—L,x3),t)dzrs  (5.24)
—0, (5.25)

by the boundary conditions (5.8e) and (5.8f). Therefore o, € P,.(X). O

Again, as in Section 1.6.2, we take the coordinate transform as suggested by Hoskins [42] :

~1
T,(x) = Pt Fe( ) , (5.26)

0(x,1t)

_9
eofgor

where x = (z1, x3).
For ¢t € [0,tf], define oy € P(Y) by oy = (13)x0;. The goal of this section is to derive a

PDE for a;. We introduce

sg [0 -1

J =
fcoreo 1 0

(5.27)

In order to derive the PDE for the measure «y, we first take the material derivative of Eq. (5.26):

Dy + [t Dyv uy + 8¢y fogt (IT — Tlp) — u 2% (1 —1I
T T e e A [ N B RS
DY ~7a fenllo \ (x =12 - &
Define on X the velocity W(-,t) as
Id-T;)-é
w7 ) )& , (5.29)
cpbo o
== (I —1I)
so that
0T, = —(VT,)us + W.
Using the coordinate transformation we can rewrite the term
T, —1d) - &
sv_ s (Liold)-& o (5.30)

0~ furbo T, &

Note that the value of § can be extracted from 6 and v.
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Now we are ready to formally derive the PDE. Consider a test function ¢ € C°()). Then

g yw(y)daxw:% | #(Ti0) o (x) (531)
- /X Vo(Ty(x)) - OTo(x) doy(x) + /X o(T(x)) () dx (5.32)
/ Vo(T(x)) - (~ (VT (x))us + W(x, 1)) doy(x) (5.33)

- /X A(Tx))V - (0(x)us) dx — /X H(Tx)Sx ) doy(x)  (5.34)
. /X VIp(T,(x))] - us oy (x) — /X ATV - (r(x)us)dx  (5.35)

+ /X Vo (Ti(x)) - W(x, t) doy (x) — / ST(x)S(x, 1) doy(x).  (5.36)

X

Then by integration by parts and our boundary conditions the two terms in expression (5.35)

cancel and we are left with the equation

G | edaty) = [ Vo) W o) - [ oh)sE D). (630
Therefore
% /y ) day(y / Vo(y y,t) doy(y) — /y o(y)S(y,t) dau(y), (5.38)
where
w<y,t>w<Ttl<y>,t>J( (I ) ) (5.39)
2 (o — (T (y), 1))
S(y.t) = ST ) = 22 YT ) (540

which are the geostrophic velocity and the source/sink in geostrophic coordinates. Eq. (5.38)

holds for all ¢ therefore the continuity equation in geostrophic coordinates is

Oroyy + V - (apw) = —aS. (5.41)
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Consider the total geostrophic energy associated to the semi-geostrophic approximation (5.8)
given by

E,(t) = /Q gvz + gpxs — cppllpf + ¢, pllf dx, (5.42)

which is the sum of the kinetic, potential, and internal energy contributions. By Eq. (5.26),
Eq. (5.42) can be rewritten as

Eg(t) - F(Tta O¢, at)
(5.43)

2

= | (o= T+ a7 = ol Jodx+ [ o) ax

where the internal energy density f is defined by

ksY if s >0,
fs) = (5.44)

+00 otherwise.

An optimal transport cost function, ¢ : X — ), emerges naturally from this representation of

the energy, and it is given by

2

X
c(xy) = 50 (m i)’ + gy—j — ¢l (5.45)

As before, the Cullen convexity principle says that F(-,04, ;) is minimised over all mass-

preserving rearrangements of fluid particles, i.e. that solutions of Eq. (5.8) should also satisfy

F(T_‘t, O¢, CYt) = min F(St, O¢, Oét) = 7;(Ut, th) -+ / f(O't) dx =: E(Ut, Oét), (546)
X

(St)por=ay

where again 7. is the optimal transport cost as defined in (MP).

Remark 5.2.2. The energy functional for the slice model and the corresponding optimal trans-
port cost function in Eq. (5.45) are structurally almost identical to their three-dimensional
counterparts discussed in Section 1.6.2. The only difference in the cost function is the addition
of the constant term —c,ll,.

This addition does not alter the core arguments used to establish the link between the
system dynamics and optimal transport and we can choose ¢; = —kvyo; ~!. Specifically, the

proof of Proposition 1.6.2, which states that the potential ¢, is c-concave if and only if 7} is

135



Chapter 5: 2D Compressible Model

the optimal transport map, relies on the spatial gradient of the cost function, Vyc(x,y). Since
the new term is a constant, its gradient is zero, leaving this crucial calculation unchanged.
Furthermore, adding a constant to the cost function only shifts the total energy F(oy, ay)
by that same constant; it does not change the minimizer o; with respect to which the energy
is minimized. Therefore, the arguments presented in the introduction directly apply. These
observations justify the conclusion that, for this slice compressible model, the coordinate trans-
form 7T; is the unique optimal transport map that transports o; to a;, and that oy is the unique

minimizer of the energy functional F(oy, ay).

Discretisation

In light of this we can discretise this PDE by plugging in the particle approximation

N
= Z miézz (5.47)
=1

As was done in Chapter 1 we use the centroids, C’. Starting with the velocity term on the

right-hand side of Eq. (5.38) we can write

(Ci(zt) —z) &

; , (5.48)
A ()

/y Ve(y) - wly, t) dou(y Z mV

where

Er(z) = iz /Li( )HO — I(x) doy(x). (5.49)

my

The source/sink term gives

/y o(y)S(y, 1) dan(y Z mip(aiy 7= C') & (5.50)

Zi - €3
The left-hand side of Eq. (5.38) yields

% /3,*"(3’) douly) = [i(#) + miVip(z) - 2] (5.51)
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Combining equations (5.48), (5.50), and (5.51) gives

N
Z mt‘P Zt +mtv90(zt) }
=1

(5.52)
(C'(ze) — 2¢) - &

A )

N
: . z CZ z
=Y miVe(z) - J E i (al) 2 ( )-8
=1 =1

Fix 7. First choose ¢ such that ¢(z!) = 1, p(z!) = 0 for all j # i and ¢ constant in a
neighbourhood of z¥ for all k. This gives an ODE for m’. Then choosing ¢ to be a constant in
a neighbourhood of z  for all j # ¢ implies that V¢ = 0 in a neighbourhood of zt and taking ¢
such that Vip(y) =y in a neighbourhood of z} then gives an ODE for z'. The evolution of the

i-th particle, for ¢ € {1,..., N}, is governed by the coupled ordinary differential equations:

= Jwi(t), (5.53)
mi = —miSi(t),

where

(Clze) —21) - &
cpgeo E[(Zt)

sy _ %0 (#@=Cl(m) &
Jeorto zj - €3
The ODE system (5.53) differs from the the one derived in the incompressible case (Eq. (2.23))
in that compressibility causes the mass of each individual cell to change in time, while the over-
all mass remains constant. The numerical simulation of the solutions of this ODE system
will constitute the first step towards a full 3D discretisation scheme for the compressible semi-

geostrophic system.
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Conclusion

This thesis has developed a unified and powerful framework for the analysis and simulation of
the semi-geostrophic equations, built upon the geometric foundations of semi-discrete optimal
transport. By constructing the first fully 3D, energy-conserving numerical scheme for the
incompressible system and establishing a foundational existence theory for the more complex
compressible case, this work has pushed the boundaries of both computational and theoretical
atmospheric science. The rigorous validation of the framework’s geometric preconditions for
physically crucial rectangular domains ensures that these theoretical advances are not merely
abstract, but are directly relevant to practical modelling. The research culminates in the
derivation of a novel 2D compressible model in geostrophic coordinates, which completes the
cycle of inquiry from computation to theory and back again, laying the groundwork for the
next generation of simulations. The profound interplay between the analytical power of optimal
transport theory and the physical complexity of mathematical meteorology, as demonstrated
throughout this work, opens up a rich landscape of future research, promising deeper insights

into the dynamics of our atmosphere.

6.1 Future Research Directions and Open Problems

The contributions of this thesis, illuminate a landscape of compelling open questions that
define a clear research program for the future. These avenues for inquiry can be organized
into three principal domains: enhancing the physical realism of the SG model, strengthening
the underlying numerical and analytical framework, and addressing fundamental theoretical

questions at the intersection of optimal transport and fluid dynamics.
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6.1.1 FEnhancing the Physical Realism of the SG Model

The current model, in line with much of the theoretical literature, makes several idealizing
assumptions. Future work should aim to incorporate more complex physics to bring the model
closer to operational atmospheric science. A primary extension is the introduction of viscosity,
particularly in a vertical boundary layer near the Earth’s surface where frictional effects are
dominant. This set of equations is known as the Geo-Triptic Equations (see [19]). The strictly
decreasing nature of this system’s energy in the presence of dissipation suggests that a gradient
flow formulation might be a natural and powerful framework for tackling this problem.

Another critical extension is the treatment of a variable Coriolis force. While a key advan-
tage of the SG equations over the quasi-geostrophic system is their validity for a non-constant
Coriolis parameter, this thesis has assumed it to be constant for analytical tractability. In-
corporating a variable Coriolis force is physically necessary to model flows spanning significant
latitudinal ranges, but poses a major challenge in geostrophic coordinates, where the coordinate
transformation itself depends on this parameter. Some work in this direction has been done by
[62].

Finally, given the inherently chaotic and unpredictable nature of weather, developing a
physically meaningful stochastic formulation of the SG equations is an interesting conceptual
challenge. It is unclear where stochasticity should be introduced, in the particle dynamics, the
transport map, or elsewhere, to represent unresolved sub-grid scale processes or uncertainties
in initial data. Successfully addressing these challenges would represent a significant step in
transitioning the semi-discrete optimal transport framework from a powerful theoretical and

diagnostic tool into a potential component of next-generation predictive models.

6.1.2 Strengthening the Numerical and Analytical Framework

Another avenue for future research stems from a crucial dichotomy observed in the numerical
experiments of Chapter 2. While the scheme demonstrates exceptional global energy conserva-
tion, long-term simulations exhibit a degradation in accuracy, especially after the formation of
sharp fronts, when compared to high-resolution reference solutions. This raises the fundamental
question: can a bespoke time-stepping scheme be developed to address this?

The particle ODE system’s evolution is dictated by the centroid map, a highly non-local
right-hand side whose regularity properties shift dramatically as particle configurations evolve

and fronts steepen. Standard ODE solvers are ill-equipped to handle this behaviour. The chal-
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lenge, therefore, is to investigate the possibility of designing a custom integrator that preserves
the geometric structure of the flow not just in space, but also in time. If such a scheme can
be formulated, the next step would be its implementation and testing to validate its efficacy
in maintaining long-term accuracy. However, the possibility that no such structure-preserving
temporal scheme exists must also be considered.

Another significant open question on the numerical front is the development of a stability
condition analogous to the Courant—Friedrichs-Lewy (CFL) condition for grid-based methods.
For this particle-based scheme, which couples a standard ODE solver with an Optimal Transport
(OT) solver, there is currently no theoretical framework that dictates the relationship between
the number of particles (the spatial resolution) and the maximum allowable timestep size for
the ODE solver. Establishing an “OT particle CFL” condition would be a major step forward,
providing a rigorous guideline for ensuring the stability and convergence of the simulations.
This would involve a deep analysis of how errors from the OT solver and the ODE integrator
interact and propagate, a challenging task given the complex, non-local nature of the centroid
map.

On a more fundamental level, a rigorous numerical convergence result for the semi-discrete
scheme remains a major open problem. While convergence has been established for fully dis-
crete, entropy-regularized methods (see [12]), a similar proof for the semi-discrete case is elusive
and sought after. The semi-discrete method exists in a challenging middle ground between the
continuous and the discrete. This hybrid nature is the source of its power, yielding exact weak
solutions for any number of particles, but also the source of its analytical difficulty. A conver-
gence proof would require controlling the approximation error in the limit as the number of
particles tends to infinity, a process where the geometric complexity of the underlying Laguerre
tessellation can become immense. These problems highlight the frontier of numerical analysis
for optimal transport-based methods, and solving them would provide the ultimate validation

of the method’s reliability.

6.1.3 Fundamental Questions in Optimal Transport and Fluid Dynamics

Several deep theoretical questions remain at the heart of the SG system. The uniqueness of
weak solutions to the governing PDE is a major open problem in the field, with significant
implications for the predictability of the system.

A related challenge lies in the rigorous validation of the simulations. The first step, a
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significant open problem in its own right, is to formally define the full physical velocity field
from the semi-discrete particle system. The motion of the cell centroids provides a natural
candidate for this construction. However, it remains to be proven that a velocity field derived
from these centroids constitutes a valid solution to the governing PDE in the original physical
coordinates.

Building on this, a separate but related goal is to validate the physical accuracy of the
simulations by demonstrating that the system maintains geostrophic balance. To do so, one
must first have a valid definition of the full velocity field in order to measure any deviations
from it. With that established, a powerful avenue for validating the simulation’s quality would
be to show that the ageostrophic component of the flow, the part deviating from the geostrophic
ideal, remains appropriately small.

Finally, the theoretical framework, particularly for the existence proof in Chapter 3, relies
on placing particles in distinct horizontal planes to prevent collisions. Proving that particles
do not collide even if they lie in the same plane would remove this technical restriction and
immediately extend the existence and regularity results to 2D cases. These problems are
deeply interconnected. Proving particle non-collision is a question about the regularity of the
Lagrangian flow map defined by the particle ODEs. Understanding this flow is a prerequisite
for rigorously defining the physical velocity field. And the uniqueness of the PDE solution is
intimately tied to the stability and regularity properties of these Lagrangian paths.
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